Skip to main content

Frontal Lobe and the Cognitive Foundation of Behavioral Action

  • Chapter
Neurobiology of Decision-Making

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Summary

Motor representations are hierarchically organized in dorsolateral frontal cortex. The highest, most global plans and schemes of action appear to be represented in prefrontal cortex, intermediate ones in premotor cortex, and the most elementary motor acts in primary motor cortex. The confluence of external and internal inputs on frontal cortex leads to the activation of frontal neuron networks representing different categories of action. The activation of these networks is the physiological substrate for the initiation and execution of behavioral action.

Sequences of deliberate action require the coordinated interplay of all stages of the frontal hierarchy. Two cognitive functions for temporal integration operate at every stage: active short-term memory and preparatory set. Both are most apparent and can best be studied in the prefrontal cortex, where the longest action sequences are represented and coordinated and where cross-temporal contingencies are mediated. The prefrontal cortex, in cooperation with subcortical and posterior cortical areas, ensures the retention of sensory information for prospective action and the preparatory set of motor systems for its execution. Both of these functions of the prefrontal cortex have been substantiated by neuropsychology, reversible lesion and microelectrode recording in the monkey, and neuroimaging in the human.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert ML, Goodglass H, Helm NA, Rubens AB, Alexander MP (1981) Clinical aspects of dysphasia. New York, Springer

    Google Scholar 

  • Alexander GE, Crutcher MD (1990a) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990b) Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. J Neurophysiol 64:133–150

    CAS  PubMed  Google Scholar 

  • Barbizet J (1970) Human Memory and its pathology. San Francisco, Freeman

    Google Scholar 

  • Bauer RH, Fuster JM (1976) Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J Comp Physiol Psychol 90:293–302

    Article  CAS  PubMed  Google Scholar 

  • Betz W (1874) Anatomischer Nachweis zweier Gehirncentra. Centralblatt für die medizinische Wissenschaften 12:578–580,

    Google Scholar 

  • Betz W (1874) Anatomischer Nachweis zweier Gehirncentra. Centralblatt für die medizinische Wissenschaften 12: 595–559

    Google Scholar 

  • Brown JW (1987) The microstructure of action. In: Perecman E (ed) The frontal lobes revisited. New York, IRBN Press, pp 250–272

    Google Scholar 

  • Brunia CHM, Haagh SAVM, Scheirs JGM (1985) Waiting to respond: Electrophysiological measurements in man during preparation for a voluntary movement. In: Heuer H, Kleinbeck U, Schmidt K-H (eds) Motor behavior. New York, Springer

    Google Scholar 

  • Di Pellegrino G, Wise SP (1991) A neurophysiological comparison of three distinct regions of the primate frontal lobe. Brain 114:951–978

    Article  PubMed  Google Scholar 

  • Flechsig P (1901) Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet 2:1027–1029

    Article  Google Scholar 

  • Freedman M, Oscar-Berman M (1986) Bilateral frontal lobe disease and selective delayed response deficits in humans. Behav Neurosci 100:337–342

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    CAS  PubMed  Google Scholar 

  • Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. J Neurophysiol 36:61–78

    CAS  PubMed  Google Scholar 

  • Fuster JM (1989) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. New York, Raven

    Google Scholar 

  • Fuster JM (1994) Memory in the cerebral cortex: An empirical approach to neural networks in the human and nonhuman primate. Cambridge, MIT Press

    Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM, Bauer RH, Jervey JP (1982) Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp Neurol 77:679–694

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM, Bauer RH, Jervey JP (1985) Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res 330:299–307

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    Article  CAS  PubMed  Google Scholar 

  • Goldberg G, Mayer NH, Toglia JU (1981) Medial frontal cortex infarction and the alien hand sign. Arch Neurol 38:683–686

    CAS  PubMed  Google Scholar 

  • Hécaen H, Albert ML (1978) Human neuropsychology. New York, John Wiley & Sons

    Google Scholar 

  • Ingvar DH (1985) “Memory of the future:” An essay on the temporal organization of conscious awareness. Human Neurobiol 4:127–136

    CAS  Google Scholar 

  • Jackson JH (1915) On affections of speech from disease of the brain. Brain 38:107–174

    Article  Google Scholar 

  • Jacobsen CF (1935) Functions of the frontal association area in primates. Arch Neurol Psychiatry 33:558–569

    Google Scholar 

  • Jonides J, Smith EE, Doeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625

    Article  CAS  PubMed  Google Scholar 

  • Kornhuber HH, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferent Potentiale. Pfluegers Arch Gesamte Physiol 284:1–17

    Article  CAS  Google Scholar 

  • Lashley KS (1951) The problem of serial order in behavior. In: Jeffress LA (ed) Cerebral mechanisms in behavior. New York, John Wiley & Sons, pp 112–146

    Google Scholar 

  • Lewinsohn PM, Zieler RE, Libet J, Eyeberg S, Nielson G (1972) Short-term memory: A comparison between frontal and nonfrontal right- and left-hemisphere brain damaged patients. J Comp Physiol Psychol 81:248–255

    Article  CAS  PubMed  Google Scholar 

  • Lhermitte F, Deroulsne J, Signoret JL (1972) Analyse neuropsychologique du syndrome frontal. Rev Neurol 127:415–440

    CAS  PubMed  Google Scholar 

  • Libet B (1985) Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav Brain Sei 8:529–566

    Article  Google Scholar 

  • Luria AR (1966) Higher cortical functions in man. New York, Basic Books

    Google Scholar 

  • Luria AR (1970) Traumatic aphasia. The Hague, Mouton

    Google Scholar 

  • Milner B, Petrides M, Smith ML (1985) Frontal lobes and the temporal organization of memory. Human Neurobiol 4:137–142

    CAS  Google Scholar 

  • Niki H (1974) Differential activity of prefrontal units during right and left delayed response trials. Brain Res 70:346–349

    Article  CAS  PubMed  Google Scholar 

  • Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. In: Peters A, Jones EG (eds) Association and auditory cortices. New York, Plenum, pp 3–61

    Google Scholar 

  • Quintana J, Fuster JM (1992) Mnemonic and predictive functions of cortical neurons in a memory task. NeuroReport 3:721–724

    Article  CAS  PubMed  Google Scholar 

  • Shindy WW, Posley KA, Fuster JM (1994) Reversibel deficit in haptic delay tasks from cooling prefrontal cortex. Cerebral Cortex 4:443–450

    Article  CAS  PubMed  Google Scholar 

  • Sierra-Paredes G, Fuster JM (1993) Auditory-visual association task impaired by cooling prefrontal cortex. Soc Neurosci Abstracts 19:801 (Abstract)

    Google Scholar 

  • Stuss DT, Benson DF (1986) The frontal lobes. New York, Raven Press

    Google Scholar 

  • Swartz BE, Halgren E, Fuster JM, Simplins F, Gee M, Mandelkern M (1995) Cortical metabolic activation in humans during a visual memory task. Cerebral Cortex, in press

    Google Scholar 

  • Tanji J, Evarts EV (1976) Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J Neurophysiol 39:1060–1068

    Google Scholar 

  • Thompson RF (1986) The neurobiology of learning and memory. Science 233:941–947

    Article  CAS  PubMed  Google Scholar 

  • Walter WG, Cooper R, Aldrige VJ, McCallum WC, Winter AL (1964) Contingent negative variation: An electric sign of sensori-motor association and expectancy in the the human brain. Nature 203:380-384

    Article  CAS  PubMed  Google Scholar 

  • Weizsäcker Won (1950) Der Gestaltkreis. Stuttgart, Thieme

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuster, J.M. (1996). Frontal Lobe and the Cognitive Foundation of Behavioral Action. In: Damasio, A.R., Damasio, H., Christen, Y. (eds) Neurobiology of Decision-Making. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79928-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79928-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79930-3

  • Online ISBN: 978-3-642-79928-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics