Skip to main content

Towards Understanding the Molecular Ecology of Phytoplankton Photosynthesis

  • Conference paper
Molecular Ecology of Aquatic Microbes

Part of the book series: NATO ASI Series ((ASIG,volume 38))

Abstract

Many of the basic questions related to the magnitude, control, and interspecific variation of phytoplankton productivity confronting aquatic ecologists during the last decade of the twentieth century are virtually identical to those posed in the first three decades (Mills 1989). For example, determining which factor limits community production, let alone the growth rates of the component species, is a time-honoured endeavour (Johnstone 1911; Harvey 1926; Riley 1965; Ryther 1969; Eppley 1980; Barber 1992; Joint 1995). The contemporary discussions about the importance of nutrient fluxes, trace metals, light, temperature and grazers in regulating the abundance and distribution of primary production, phytoplankton biomass and individual species are incarnations of historical debates dating to the inception of aquatic science (Cooper 1935; Harvey 1957; Banse 1992; Martin 1992). That these issues remain, for the most part, unresolved, bespeaks profoundly of our inability to quantitatively relate ecophysiological responses to population genetics and vice versa. The general problem may be rephrased as a search for a way of predicting the ecological manifestation of the evolutionary concept of “fitness”. Even given knowledge of all the genomes of all the organisms in the world, this Gordian knot cannot be cut by reductionist experimentation (Gillespie 1991), yet that approach is so ingrained in our training as scientists that virtually no other is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JF, J. Bennett J, Steinback KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy bewteen photosystems. Nature 291: 25–30

    Article  CAS  Google Scholar 

  • Baker NK and Bowyer JR (eds) 1994. Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Bios Scientific Publishers, Oxford. pp471

    Google Scholar 

  • Banse K. (1992) Grazing, Temporal Changes of Phytoplankton Concentrations, and the Microbial Loop in the Open Sea. In: Primary Productivity and Biogeochemical Cycles in the Sea Falkowski PG and Woodhead AD (eds) Plenum Press, New York and London 409–440.

    Google Scholar 

  • Barber J (ed) (1992) The Photosystems: Structure, Function and Molecular Biology. Topics in Photosynthesis. Elsevier, New York. pp557

    Google Scholar 

  • Barber J and Andersson B (1994) Revealing the blueprint of photosynthesis. Nature 370:31–34

    Article  CAS  Google Scholar 

  • Barber RT (1992) Geological and climatic time scales of nutrient availability. In: Primary Productivity and Biogeochemical Cycles in the Sea, Falkowski PG and Woodhead A (eds) Plenum Press, New York pp89–106

    Google Scholar 

  • Bennett J (1991) Protein phosphorylation in green plant chloroplasts. Ann Rev Plant Physiol 42: 281–311

    Article  CAS  Google Scholar 

  • Brand LE (1981) Genetic variability in reproduction rates in marine phytoplankton populations. Evolution 35: 1117–1127

    Article  Google Scholar 

  • Chalker BE (1980) Modeling light saturation curves for photosynthesis: an exponential function. J theor Biol 84: 205–215

    Article  PubMed  CAS  Google Scholar 

  • Chisholm SW and Morel FMM (eds) (1991) What Control Phytoplankton Production in the Nutrient-Rich Areas of the Open Sea? Lirnnol Oceanogr 36: 1507–1970

    Google Scholar 

  • Cooper LHN (1935) Iron in the sea and in marine plankton. Proc R Soc Lond 118B: 419–438

    Article  Google Scholar 

  • Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27: 2–8

    Article  Google Scholar 

  • Dubinsky Z, Falkowski PG, Wyman K (1986) Light harvesting and utilization in phytoplankton. Plant Cell Physiol 27: 1335–1349

    CAS  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70: 1063–1085

    Google Scholar 

  • Eppley RW (1980) Estimating phytoplankton growth rates in the central oligotrophic oceans. In: Primary productivity in the sea. Falkowski PG (ed) Plenum Press, New York pp231–242

    Google Scholar 

  • Escoubas J-M, Lomas M, LaRoche J. Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Science (in press):

    Google Scholar 

  • Falkowski PG (1980) Light-shade adaptation in marine phytoplankton. In: Primary productivity in the sea. (Falkowski PG ed) Plenum Press, New York pp99–119

    Google Scholar 

  • Falkowski PG (1981) Light-shade adaptation and assimilation numbers. J Plankt Res 3: 203–216

    Article  CAS  Google Scholar 

  • Falkowski PG (1992) Molecular ecology of phytoplankton photosynthesis. In: Primary productivity and biogeochemical cycles in the sea. Falkowski PG and Woodhead A (eds) Plenum Press, 47–67

    Google Scholar 

  • Falkowski PG (1994) The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosyn. Res 39: 235–258

    Article  CAS  Google Scholar 

  • Falkowski PG, Greene R, Geider R (1992) Physiological limitations on phytoplankton productivity in the ocean. Oceanography 5(2): 84–91

    Google Scholar 

  • Falkowski PG, Greene R, Kolber Z (1994) Light utilization and photoinhibition of photosynthesis in marine phytoplankton. In: Photoinhibition of Photosynthesis: From molecular mechanisms to the field Baker N and Bowyer J (eds) Bios Scientific, Cambridge 407–432

    Google Scholar 

  • Falkowski PG and LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27: 8–14

    Article  Google Scholar 

  • Falkowski PG and LaRoche J (1991) Adaptation to spectral irradiance in unicellular algae. J Phycol 27: 8–14

    Article  Google Scholar 

  • Falkowski PG and LaRoche J (1991) Molecular biology in studies of ocean processes. Int Rev Cytol 128: 261–303

    Article  CAS  Google Scholar 

  • Falkowski PG and Owens TG (1980) Light shade adaptation: two strategies in marine phytoplankton. Plant Physiol 66: 632–635

    Article  Google Scholar 

  • Falkowski PG, Owens TG, Ley AC, Mauzerall DC (1981) Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton. Plant Physiol 68: 969–973

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG and Raven JA (1995) Aquatic Photosynthesis. Blackwell Scientific Publishers, Oxford, (in press)

    Google Scholar 

  • Falkowski PG, Sukenik A, Herzig R (1989) Nitrogen limitation in Isochrysis galbana (Haptophyceae). II. Relative abundance of chloroplast proteins. J Phycol 25: 471–478

    Article  CAS  Google Scholar 

  • Falkowski PG and Woodhead AD (1992) Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York, pp 550

    Google Scholar 

  • Falkowski PG, Wyman K, Ley AC, Mauzerall DC (1986) Relationship of steady state photosynthesis to fluorescence in eucaryotic algae. Biochim Biophys Acta 849: 183–192

    Article  CAS  Google Scholar 

  • Fasham MJR and Platt T (1983) Photosynthetic response to light: a physiological model. Proc. R. Soc. Lond. Ser B 219: 355–370

    Article  CAS  Google Scholar 

  • Fisher T, Shurtz-Swirski R, Gepstein S, Dubinsky Z (1989) Changes in the levels of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) in Tetraedon minimum (Chlorophyta) during light and shade adaptation. Plant Cell Physiol 30: 221–228

    CAS  Google Scholar 

  • Flynn KJ, Dickson MJ, Al-Almoudi OA (1989) The ratio of glutamate:glutamine in microalgae: a biomarker for N-status suitable for use at natural cell densities. J Plankton Res 11: 165–170

    Article  CAS  Google Scholar 

  • Gallagher JC and Alberte RS (1985) Photosynthetic and cellular photoadaptive characteristics of three ecotypes of the marine diatom, Skeletonema costatum (Grev.) Cleve. J Exp Mar Biol Ecol 94: 233–250

    Article  CAS  Google Scholar 

  • Geider RJ, Greene RM, Kolber Z, Maclntyre HL, Falkowski PG (1993) Fluorescence assessment of the maximum quantum efficiency of photosynthesis in the western North Atlantic. Deep-Sea Res 40: 1205–1224

    Article  CAS  Google Scholar 

  • Geider RJ and Osborne BA (1992) Algal Photosynthesis: The Measurement of Algal Gas Exchange. Chapman and Hall, New York, pp256

    Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990: 87–92

    Article  CAS  Google Scholar 

  • Gillespie JH (1991) The Causes of Molecular Evolution. Oxford University Press, New York, pp 336

    Google Scholar 

  • Goldbeck JH (1992) Structure and function of photosystem I. Ann. Rev. Plant Phyisol. Plant Mol Biol 43: 293–324

    Article  Google Scholar 

  • Greene RM, Geider RJ, Falkowski PG (1991) Effect of iron limitation on photosynthesis in a marine diatom. Limnol Oceanogr 36: 1772–17782

    Article  CAS  Google Scholar 

  • Greene RM, Geider RJ, Kolber Z, Falkowski PG (1992) Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 100: 565–575

    Article  PubMed  CAS  Google Scholar 

  • Greene RM, Kolber ZS, Swift DG, Tindale NW, Falkowski PG (1994) Physiological limitation of phytoplankton photosynthesis in the eastern equatorial Pacific determined from the variability in the quantum yield of fluorescence. Limnol Oceanogr 39: 1061–1074

    Article  CAS  Google Scholar 

  • Harvey HW (1926) Nitrates in the sea. J Mar Biol Ass UK 14: 71–88

    Article  CAS  Google Scholar 

  • Harvey HW (1957) The Chemistry and Fertility of Sea Water. Cambridge University Press, Cambridge, pp 234

    Google Scholar 

  • Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29: 729–739

    Article  Google Scholar 

  • Herron HA and Mauzerall D (1971) The development of photosynthesis in a greening mutant of Chlorella and an analysis of the light saturation curve. Plant Physiol 50: 141–148

    Article  Google Scholar 

  • Herzig R and Falkowski PG (1989) Nitrogen limitation of Isochrysis galbana. I. Photosysnthetic energy conversion and growth efficiencies. J Phycol 25: 462–471

    Article  CAS  Google Scholar 

  • Huchinson GE (1961) The paradox of the plankton Am Nat 95: 137–145

    Article  Google Scholar 

  • Johnstone J (1911) Life in the Sea. Cambridge University Press, London, pp 150

    Google Scholar 

  • Joint I (1995) The potential of molecular ecology. This volume 1–16

    Google Scholar 

  • Kilham P and Kilham SS (1980) The evolutionary ecology of phytoplankton. In The physiological ecology of phytoplankton. Morris I (ed) Univ California Press, Los Angeles 571–597

    Google Scholar 

  • Kolber Z and Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38: 1646–1665

    Article  CAS  Google Scholar 

  • Kolber Z, Zehr J, Falkowski PG (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in Photosystem II. Plant Physiol 88: 72–79

    Article  Google Scholar 

  • Kolber ZS, Barber RT, Coale H, Fitzwater SE, Greene RM, Johnson KS, Lindley S, Falkowski PG (1994) Iron limitation of phytoplankton photosynthesis in the Equatorial Pacific Ocean. Nature 371: 145–149

    Article  CAS  Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Ann Rev Plant Physiol Plant Mole Biol 42: 313–349

    Article  CAS  Google Scholar 

  • LaRoche J, Geider RJ, Graziano LM, Murray H, Lewis K (1993) Induction of specific proteins in eucaryotic algae grown under iron-, phosphorus-, or nitrogen-deficient conditions. J Phycol 29: 767–777

    Article  CAS  Google Scholar 

  • LaRoche J, Mortain-Bertrand A, Falkowski PG (1990) Light-intensity changes in ab mRNA and LHC II apoprotein from the unicellular marine chlorophyte Dunaliella tertiolecta. Plant Physiol 97: 147–153

    Article  Google Scholar 

  • Ley A and Mauzerall D (1986) The extent of energy transfer among photosystem II reaction centres in Chlorella. Biochim Biophys Acta 850: 234–248

    Article  CAS  Google Scholar 

  • Ley AC and Mauzerall D (1982) Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim Biophys Acta 680: 95–106

    Article  CAS  Google Scholar 

  • Li WKW (1980) Temperature adaptation in phytoplankton: cellular and photosynthetic characteristics. In: Primary Productivity in the Sea Falkowski PG (ed), Plenum Press, New York 259–279

    Google Scholar 

  • Long SP, Humpries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Ann. Rev. Plant Physiol. Plant Mol Biol 45: 655–662

    Article  Google Scholar 

  • Martin JH (1992) Iron as a limiting factor in oceanic productivity. In: Primary Productivity and Biogeochemical Cycles in the Sea Falkowski P and Woodhead A (eds) Plenum Press, New York 137

    Google Scholar 

  • Mauzerall D (1978) Multiple excitations and the yield of chlorophyll a fluorescence in photosynthetic systems. Photochem Photobiol 28: 991–998

    Article  CAS  Google Scholar 

  • Mauzerall D and Greenbaum NL (1989) The absolute size of a photosynthetic unit. Biochim Biophys Acta 974: 119–140

    Article  CAS  Google Scholar 

  • Medlin LK, Lange M, Barker GLA, Hayes PK (1995) Can molecular techniques change our ideas about the species concept? This volume 133–152

    Google Scholar 

  • Mills EL (1989) Biological Oceanography. An Early History, 1870–1960. Cornell University Press, Ithaca, pp 378

    Google Scholar 

  • Morel A (1991) Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Prog Oceanogr 26: 263–306

    Article  Google Scholar 

  • Mortain-Bertrand A, Bennett J, Falkowski PG (1990) Photoregulation of LHCII in Dunaliella tertiolecta: Evidence that apoprotein abundance but not stability requires chlorophyll synthesis. Plant Physiol 94: 304–311

    Article  PubMed  CAS  Google Scholar 

  • Myers J and Graham J-R (1971) The photosynthetic unit in Chlorella measured by repetitive short flashes. Plant Physiol 48: 282–286

    Article  PubMed  CAS  Google Scholar 

  • Neale PJ (1987) Algal photoinhibition and photosynthesis in the aquatic environment. In: Photoinhibition Kyle DJ, Osmond CB, Arntzen CJ (eds) Elsevier, New York 39–65

    Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field Baker NR and Bowyer JR (ed) Bios Scientific, Oxford 1–24

    Google Scholar 

  • Perry MJ, Talbot MC, Alberte RS (1981) Photoadaptation in marine phytoplankton: response of the photosynthetic unit. Mar Biol 62: 91–101

    Article  CAS  Google Scholar 

  • Platt T and Sathyendranath S (1988) Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241: 1613–1620

    Article  PubMed  CAS  Google Scholar 

  • Prasil O, Adir N, Ohad I (1992) Dynamics of photosystem II: mechanisms of photoinhibition and recovery processes. In: The Photosystems: Structure, Function and Molecular Biology, Barber JR (ed) Elsevier, New York 295–348

    Google Scholar 

  • Prézelin BB and Alberte RS (1978) Photosynthetic characteristics and organisation of chlorophyll in marine dinoflagellates. Proc Nat Acad Sci USA 75: 1801–1804

    Article  PubMed  Google Scholar 

  • Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93: 157–191

    Article  Google Scholar 

  • Riley GA (1965) A mathematical model of regional variations in plankton. Limnol Oceanogr 10: R202–215

    Article  Google Scholar 

  • Ryther JH (1969) Photosynthesis and fish production in the sea. Science 166: 72–76

    Article  PubMed  CAS  Google Scholar 

  • Ryther JH and Menzel DW (1959) Light adaptation by marine phytoplankton. Limnol Oceanogr 4: 492–497

    Article  Google Scholar 

  • Smayda TJ (1989) Phytoplankton species succession. In: The physiological ecology of phytoplankton Morris I (ed) Univ California Press, Los angeles 493–570

    Google Scholar 

  • Steemann Nielsen E (1962) The adaptation to different light intensities in Chlorella vulgaris and the time dependence on transfer to a new light intensity. Physiol Plant 15: 505–517

    Article  Google Scholar 

  • Sukenik A, Wyman KD, Bennet J, Falkowski PG (1987) Light-saturated photosynthesis-limitation by electron transport a carbon fixation? Biochim Biophys Acta 891: 205–215

    Article  CAS  Google Scholar 

  • Vassiliev IR, Kolber ZS, Mauzerall D, Shukla VK, Wyman KD, Falkowski PG (1995) Effects of iron limitation on Photosystem II composition and energy trapping in Dunaliella tertiolecta. Biochim. Biophys. Acta in press.

    Google Scholar 

  • Vassiliev IR, Prasil O, Wyman KD, Kolber Z, Hanson AK Jr, Prentice JE, Falkowski PG (1994) Inhibition of PSII photochemistry by PAR and UV radiation in natural phytoplankton communities. Photosyn Res 42: 51–64

    Article  CAS  Google Scholar 

  • Weaver EC and Weaver HE (1969) Paramagnetic unit in spinach subchloroplast particles; estimation of size. Science 165: 906–908

    Article  PubMed  CAS  Google Scholar 

  • Wood AM and Leatham TL (1992) The species concept in phytoplankton ecology. J Phycol 28: 723–729

    Article  Google Scholar 

  • Weger HG, Herzig R, Falkowski PG, Turpin DH (1989) respiratory losses in a marine diatom: measurements by short-term mass-spectrometry. Limnol Oceanogr 34: 1153–1161

    Article  CAS  Google Scholar 

  • Zehr JP, Falkowski PG, Fowler J, Capone DG (1988) Coupling between ammonium uptake and incorporation in a marine diatom: Experiments with the short-lived radioisotope 13N. Limnol Oceanogr 33: 518–527

    Article  CAS  Google Scholar 

  • Zipfel W and Owens TG (1991) Calculation of the absolute Photosystem I absorption cross-sections from P700 photooxidation kinetics. Photosyn Res 29: 23–32

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Falkowski, P.G. (1995). Towards Understanding the Molecular Ecology of Phytoplankton Photosynthesis. In: Joint, I. (eds) Molecular Ecology of Aquatic Microbes. NATO ASI Series, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79923-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79923-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79925-9

  • Online ISBN: 978-3-642-79923-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics