Skip to main content

Platelet Regulation and Damage in Vascular Thrombotic and Septic Disorders

  • Chapter
Role of Nitric Oxide in Sepsis and ADRS

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 24))

Abstract

The discovery of the endogenous pathway for biosynthesis of nitric oxide (NO) from L-arginine and the appreciation that this mediator regulates riot only vascular tone but also platelet function have resulted in revisiting the physiological regulation of vascular hemostasis [1]. In this chapter, we will describe the basis for this regulation in health and review how the changes in the release, metabolism and action of NO may be involved in the pathogenesis of vascular pathologies including septicemia, thrombosis and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Radomski MW, Moncada S (1993) Regulation of vascular homeostasis by nitric oxide. Thromb Haemost 70:36–41

    PubMed  CAS  Google Scholar 

  2. Radomski MW (1994) Platelet regulation: Another dimension for NO and nitrates. Schwarz Pharma Scientific Forum, Schwarz Pharma Publisher, vol 7

    Google Scholar 

  3. Moncada S, Gryglewski RJ, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665

    Article  PubMed  CAS  Google Scholar 

  4. Radomski MW, Palmer RMJ, Moncada S (1987) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2:1057–1058

    Article  PubMed  CAS  Google Scholar 

  5. Moncada S (1982) Biological importance of prostacyclin. Br J Pharmacol 76:3–31

    PubMed  CAS  Google Scholar 

  6. Radomski MW, Palmer RMJ, Moncada S (1990) An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87: 5193–5197

    Article  PubMed  CAS  Google Scholar 

  7. Radomski MW, Palmer RMJ, Moncada S (1990) Characterization of the L-arginine/ nitric oxide pathway in human platelets. Br J Pharmacol 101:325–328

    PubMed  CAS  Google Scholar 

  8. Pronai L, Ichimori K, Nozaki H, et al (1991) Investigation of the existence and biological role of L-arginine/nitric oxide pathway in human platelets by spin-trapping/EPR studies. Eur J Biochem 202:923–930

    Article  PubMed  CAS  Google Scholar 

  9. Yao SK, Ober JC, Krishnaswami A, et al (1992) Endogenous nitric oxide protects against platelet aggregation and cyclic flow variations in stenosed and endothelium- injured arteries. Circulation 86:1302–1309

    PubMed  CAS  Google Scholar 

  10. Cadwgan TM, Benjamin N (1993) Evidence for altered platelet nitric oxide synthesis in essential hypertension. J Hypertension 11:417–420

    Article  CAS  Google Scholar 

  11. Noris M, Benigni A, Boccardo P, et al (1993) Enhanced nitric oxide synthesis in uremia: Implications for platelet dysfunction and dialysis hypotension. Kidney Int 44: 445–450

    Article  PubMed  CAS  Google Scholar 

  12. Berkels R, Klaus W, Boller M, Rosen R (1994) The calcium modulator nifedipine exerts its antiaggregatory property via a nitric oxide mediated process. Thromb Haemost 72:309–312

    PubMed  CAS  Google Scholar 

  13. Muruganandam A, Mutus B (1994) Isolation of nitric oxide synthase from human platelets. Biochem Biophys Acta 1200:1–6

    Article  PubMed  CAS  Google Scholar 

  14. Marsden PA, Shappert KT, Chen HS, et al (1992) Molecular cloning and characterisation of human endothelial nitric oxide synthase. FEBS Lett 307:287–293

    Article  PubMed  CAS  Google Scholar 

  15. Sessa WV, Harrison JK, Barber CM, et al (1992) Molecular cloning and expression of cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 267: 15274–15276

    Google Scholar 

  16. Moncada S (1992) The 1991 Ulf von Euler Lecture. The L-Arginine: Nitric oxide pathway. Acta Physiol Scand 145:201–227

    Article  PubMed  CAS  Google Scholar 

  17. McCall TB, Boughton-Smith NK, Palmer RMJ, Whittle BJR, Moncada S (1989) Synthesis of nitric oxide from L-arginine by neutrophils. Biochem J 261:293–296

    PubMed  CAS  Google Scholar 

  18. Malinski T, Radomski MW, Taha Z, Moncada S (1993) Direct electrochemical measurement of nitric oxide released from human platelets. Biochem Biophys Res Commun 194:960–965

    Article  PubMed  CAS  Google Scholar 

  19. Brune B, Volker U (1991) Different calcium pools in human platelets and their role in thromboxane A2 formation. J Biol Chem 266: 19232–19237

    PubMed  CAS  Google Scholar 

  20. Rees DD, Palmer RMJ, Moncada S (1989) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86:3375–3378

    Article  PubMed  CAS  Google Scholar 

  21. Cooke JP, Rossitch E Jr, Andon NA, Loscalzo J, Dzau VJ (1991) Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest 88:1663–1671

    Article  PubMed  CAS  Google Scholar 

  22. Radomski MW, Palmer RMJ, Moncada S (1987) The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 148: 1482–1489

    Article  PubMed  CAS  Google Scholar 

  23. Sneddon JM, Vane JR (1988) Endothelium-derived relaxing factor reduces platelet adhesion to bovine endothelial cells. Proc Natl Acad Sci USA 85: 2800–2804

    Article  PubMed  CAS  Google Scholar 

  24. Venturini CM, Del Vecchio PJ, Kaplan JE (1989) Thrombin-induced platelet adhesion to endothelium is modified by endothelial derived relaxing factor (EDRF). Biochem Biophys Res Commun 159: 349–354

    Article  PubMed  CAS  Google Scholar 

  25. Pohl U, Busse R (1989) EDRF increases cyclic GMP in platelets during passage through the coronary vascular bed. Circ Res 65: 1798–1803

    PubMed  CAS  Google Scholar 

  26. Radomski MW, Palmer RMJ, Moncada S (1987) Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 92:181–187

    PubMed  CAS  Google Scholar 

  27. Radomski MW, Palmer RMJ, Moncada S (1987) The anti-aggregating properties of vascular endothelium: Interactions between prostacyclin and nitric oxide. Br J Pharmacol 92:639–646

    PubMed  CAS  Google Scholar 

  28. Furlong B, Henderson AH, Lewis MJ, Smith J A (1987) Endothelium-derived relaxing factor inhibits in vitro platelet aggregation. Br J Pharmacol 90: 687–692

    PubMed  CAS  Google Scholar 

  29. Busse R, Luckhoff A, Bassenge E (1987) Endothelium-derived relaxing factor inhibits platelet activation. Naunyn Schmiedeberg’s Arch Pharmacol 336: 566–571

    Article  CAS  Google Scholar 

  30. Macdonald PS, Read MA, Dusting GJ (1988) Synergistic inhibition of platelet aggregation by endothelium-derived relaxing factor and prostacyclin. Thromb Res 49:437–449

    Article  PubMed  CAS  Google Scholar 

  31. Alheid U, Reichwehr I, Forstermann U (1989) Human endothelial cells inhibit platelet aggregation by separately stimulating platelet cyclic AMP and cyclic GMP. Eur J Pharmacol 164:103–110

    Article  PubMed  CAS  Google Scholar 

  32. Houston DS, Robinson P, Gerrard JM (1990) Inhibition of intravascular platelet aggregation by endothelium-derived relaxing factor: Reversal by red blood cells. Blood 76:953–958

    PubMed  CAS  Google Scholar 

  33. Broekman MJ, Eiroa AM, Marcus AJ (1991) Inhibition of human platelet reactivity by endothelium-derived relaxing factor from human umbilical vein endothelial cells in suspension: Blockade of aggregation and secretion by an aspirin-insensitive mechanism. Blood 78:1033–1040

    PubMed  CAS  Google Scholar 

  34. Rosenblum WI, Nelson GH, Povlishock JT (1987) Laser-induced endothelial damage inhibits endothelium-dependent relaxation in the cerebral microcirculation of the mouse. Circ Res 60:169–176

    PubMed  CAS  Google Scholar 

  35. Golino P, Capelli-Bigazzi M, Ambrosio G, et al (1992) Endothelium-derived relaxing factor modulates platelet aggregation in an in vivo model of recurrent platelet activation. Circ Res 71:1447–1456

    PubMed  CAS  Google Scholar 

  36. May GR, Crook P, Moore PK, Page CP (1991) The role of nitric oxide as an endogenous regulator of platelet and neutrophil activation within the pulmonary circulation. Br J Pharmacol 102:759–763

    PubMed  CAS  Google Scholar 

  37. Herbaczynska-Cedro K, Lembowicz K, Pytel B (1991) NG-monomethyl-L-arginine increases platelet deposition on damaged endothelium in vivo. A scanning electron microscopy study. Thromb Res 64:1–9

    Article  PubMed  CAS  Google Scholar 

  38. Bhardwaj R, Page CP, May GR, Moore PK (1988) Endothelium-derived relaxing factor inhibits platelet aggregation in human whole blood in vitro and in the rat in vivo. Eur J Pharmacol 157:83–91

    Article  PubMed  CAS  Google Scholar 

  39. Hogan JC, Lewis MJ, Henderson AH (1988) In vivo EDRF activity influences platelet function. Br J Pharmacol 94:1020–1022

    PubMed  CAS  Google Scholar 

  40. Humphries RG, Tomlinson W, O’Connor SE, Leff P (1990) Inhibition of collagen- and ADP-induced platelet aggregation by substance P in vivo: Involvement of endothelium-derived relaxing factor. J Cardiovasc Pharmacol 16:292–297

    Article  PubMed  CAS  Google Scholar 

  41. Bodzenta-Lukaszyk A, Gabryelewicz A, Lukaszyk A, et al (1994) Nitric oxide synthase inhibition and platelet function. Thromb Res 75:667–672

    Article  PubMed  CAS  Google Scholar 

  42. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655

    Article  PubMed  CAS  Google Scholar 

  43. Moilanen E, Vuorinen P, Metsa-Ketela T, Vapaatalo H (1993) Inhibition by nitric oxide donors of human polymorphonuclear leucocyte functions. Br J Pharmacol 109: 852–858

    PubMed  CAS  Google Scholar 

  44. Stamler JS, Vaughan DE, Loscalzo J (1989) Synergistic disaggregation of platelets by tissue-type plasminogen activator, prostaglandin Ex and glyceryl trinitrate. Circ Res 65:796–804

    PubMed  CAS  Google Scholar 

  45. Walter U (1989) Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol 113:41–88

    Article  PubMed  CAS  Google Scholar 

  46. Nakashima S, Tohmatsu T, Hattori H, Okano Y, Nozawa Y (1986) Inhibitory action of cyclic GMP on secretion, phosphoinositide hydrolysis and calcium mobilization in thrombin-stimulated human platelets. Biochem Biophys Res Commun 135:1099–1104

    Article  PubMed  CAS  Google Scholar 

  47. Shahbazi T, Jones N, Radomski MW, Moro MA, Gingell D (1994) Nitric oxide donors inhibit platelet spreading on surfaces coated with fibrinogen but not fibronectin. Thromb Res 75:631–642

    Article  PubMed  CAS  Google Scholar 

  48. Salas E, Moro MA, Askew S, et al (1994) Comparative pharmacology of analogues of S-nitroso-N-acetyl-DL-penicillamine in platelets. Br J Pharmacol 112:1071–1076

    PubMed  CAS  Google Scholar 

  49. Kurose I, Kubes P, Wolf R, Anderson DC, et al (1993) Inhibition of nitric oxide production. Mechanisms of vascular albumin leakage.Circ Res 73:164–171

    CAS  Google Scholar 

  50. Maurice DH, Haslam RJ (1990) Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: Inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol 37:671–681

    PubMed  CAS  Google Scholar 

  51. Hibbs JB Jr, Taintor RR, Vavrin Z, et al (1990) Synthesis of nitric oxide from a terminal guanidino nitrogen atom of L-arginine: A molecular mechanism regulating cellular proliferation that targets intracellular iron. In: Moncada S, Higgs EA (eds) Nitric Oxide from L-Arginine: A Bioregulatory System. Elsevier, Amsterdam, pp 189–223

    Google Scholar 

  52. Mantovani A, Dejana E (1989) Cytokines as communication signals between leukocytes and endothelial cells. Immunol Today 10:370–375

    Article  PubMed  CAS  Google Scholar 

  53. Rickles FR, Levin J, Hardin JA, Conrad ME Jr (1977) Tissue factor generation by human mononuclear cells: Effects of endotoxin and dissociation of tissue factor generation from mitogenic response. J Lab Clin Med 89:792–803

    PubMed  CAS  Google Scholar 

  54. Corrigan JJ Jr, Ray W, May N (1968) Changes in the blood coagulation system associated with septicemia. N Engl J Med 279:851–856

    Article  PubMed  Google Scholar 

  55. Des Pres RM, Horowitz HI, Hook EW (1967) Effects of bacterial endotoxin on rabbit platelets. I. Platelet aggregation and release of platelet factors in vitro. J Exp Med 114:857–873

    Article  Google Scholar 

  56. Semeraro N, Colucci M, Fumarola D, Vermylen J (1978) Platelets and endotoxins: Complement-dependent and complement-independent interactions. In: di Gaetano G, Garatini S (eds) Platelets: A multidisciplinary approach. Raven Press, New York, pp 292–301

    Google Scholar 

  57. Corn M (1968) Effect of thrombin, ADP, connective tissue and endotoxin on platelet glycolysis. Nature 212:508

    Article  Google Scholar 

  58. Mueller-Eckhardt CH, Luscher EF (1968) Immune reactions of human blood platelets. IV. Investigations on the problem of an immunologically-induced effect of endotoxin on human platelets. Thromb Diath Haemorrh 20:336–344

    PubMed  CAS  Google Scholar 

  59. Hawiger J, Hawiger A, Steckley S, Timmons S, Cheng C (1977) Membrane changes in human platelets induced by lipopolysaccharide endotoxin. Br J Haematol 35: 285–299

    Article  PubMed  CAS  Google Scholar 

  60. Saba HI, Saba SR, Morelli G, Hartman RG (1984) Endotoxin-mediated inhibition of human platelet aggregation. Thromb Res 34:19–33

    Article  PubMed  CAS  Google Scholar 

  61. Lyons CR, Orloff GJ, Cunningham JM (1992) Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem 267:6470–6474

    Google Scholar 

  62. Radomski MW, Palmer RMJ, Moncada S (1990) Glucocorticoids inhibit the expression of an inducible but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sei USA 87:10043–10047

    Article  CAS  Google Scholar 

  63. Rees DD, Cellek S, Palmer RMJ, Moncada S (1990) Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: An insight into endotoxin shock. Biochem Biophys Res Commun 173: 541–547

    Article  PubMed  CAS  Google Scholar 

  64. Mehta JL, Chen LY (1995) Identification of constitutive and inducible forms of nitric oxide synthase in human platelets. J Lab Clin Med 125:370–377

    PubMed  CAS  Google Scholar 

  65. Lelchuk R, Radomski MW, Martin JF, Moncada S (1992) Constitutive and inducible nitric oxide synthases in human megakaryoblastic cells. J Pharmacol Exp Ther 262: 1220–1224

    PubMed  CAS  Google Scholar 

  66. Radomski MW, Vallanee P, Whitley G, Foxwell N, Moncada S (1993) Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine-induced nitric oxide. Cardiovasc Res 27:1380–1382

    Article  PubMed  CAS  Google Scholar 

  67. Schultz PJ, Raij L (1992) Endogenously synthesized nitric oxide prevents endotoxin- induced glomerular thrombosis. J Clin Invest 90:1718–1725

    Article  Google Scholar 

  68. Palmer RMJ, Bridge L, Foxwell NA, Moncada S (1992) The role of nitric oxide in endothelial cell damage and its inhibition by glucocorticoids. Br J Pharmacol 105:11–12

    PubMed  CAS  Google Scholar 

  69. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Google Scholar 

  70. Kooy NW, Royall JA (1994) Agonist-induced peroxynitrite production from endothelial cells. Arch Biochem Biophys 310:352–359

    Article  PubMed  CAS  Google Scholar 

  71. Moro MA, Darley-Usmar VM, Goodwin DA, et al (1994) Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci USA 91: 6702–6706

    Article  PubMed  CAS  Google Scholar 

  72. Villa LM, Salas E, Darley-Usmar VM, Radomski MW, Moncada S (1994) Peroxynitrite induces both vasodilatation and impaired vascular relaxation in the isolated perfused rat heart. Proc Natl Acad Sci USA 91:12383–12387

    Article  PubMed  CAS  Google Scholar 

  73. Luscher TF, Tanner FC, Tschudi MR, Noll G (1993) Endothelial dysfunction in coronary artery disease Ann Rev Med 44:395–418

    CAS  Google Scholar 

  74. Flavahan NA (1992) Atherosclerosis or lipoprotein-induced endothelial dysfunction. Circulation 85:1927–1938

    PubMed  CAS  Google Scholar 

  75. Cooke JP, Tsao P (1992) Cellular mechanisms of atherogenesis and the effects of nitric oxide. Curr Opin Cardiol 7:799–804

    Article  Google Scholar 

  76. Chen L, Mehta JL (1994) High density lipoprotein antagonizes the stimulatory effect of low density lipoprotein on platelet function by affecting L-arginine-nitric oxide pathway. Circulation 90:1–30

    Google Scholar 

  77. Calver A, Collier J, Moncada S, Vallanee P (1992) Effect of local infusion of NG- monomethyl-L-arginine in patients with hypertension. The nitric oxide dilator mechanism appears abnormal. J Hypertension 10:1025–1031

    Article  CAS  Google Scholar 

  78. Amado JA, Salas E, Botana MA, Poveda JJ, Berrazueta JR (1993) Low levels of intraplatelet cGMP in IDDM. Diabetes Care 16: 809–811

    Article  PubMed  CAS  Google Scholar 

  79. Yao SK, Ober JC, Golino P, Buja M, Willerson JT (1994) Both endogenous and exogenous nitric oxide protect against intracoronary thrombosis. Circulation 90:1–345

    Google Scholar 

  80. Komamura K, Node K, Kosaka H, Inoue M (1994) Endogenous nitric oxide inhibits microthromboembolism in the ischemic heart. Circulation 90:1–345

    Google Scholar 

  81. Myers PR, Wright TF, Tanner MA, Ostlund RE Jr (1994) The effects of native LDL and oxidized LDL on EDRF bioactivity and nitric oxide production in vascular endothelium. J Lab Clin Med 124:672–683

    PubMed  CAS  Google Scholar 

  82. Hogman M, Frostell C, Arnberg H, Hedenstierna G (1993) Bleeding time prolongation and NO inhalation. Lancet 341:1664–1665

    Article  PubMed  CAS  Google Scholar 

  83. Malinski T, Taha Z, Grunfeld S, et al (1993) Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun 193: 1076–1082

    Article  PubMed  CAS  Google Scholar 

  84. Feelisch M, Noack EA (1987) Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylyl cyclase. Eur J Pharmacol 139:19–30

    Article  PubMed  CAS  Google Scholar 

  85. Feelisch M (1991) The action and metabolism of organic nitrates and their similarity with endothelium-derived relaxing factor (EDRF). In: Moncada S, Higgs EA, Berra-zueta JR (eds) Clinical relevance of nitric oxide in the cardiovascular system. Edicomplet, Madrid, pp 29–43

    Google Scholar 

  86. Gerzer R, Karrenbrock B, Siess W, Heim JM (1988) Direct comparison of the effects of nitroprusside, SIN-1 and various nitrates on platelet aggregation and soluble guanylyl cyclase activity. Thromb Res 52:11–21

    Article  PubMed  CAS  Google Scholar 

  87. Chirkov YY, Belushkina NN, Tyshchuk IS, Severina IS, Horowitz JD (1991) Increase in reactivity of human platelet guanylyl cyclase during aggregation potentiates the disaggregating capacity of sodium nitroprusside. Clin Exper Pharmacol Physiol 18: 517–524

    Article  CAS  Google Scholar 

  88. Benjamin N, Dutton JAE, Ritter JM (1991) Human vascular smooth muscle cells inhibit platelet aggregation when incubated with glyceryl trinitrate: Evidence for generation of nitric oxide. Br J Pharmacol 102:847–850

    PubMed  CAS  Google Scholar 

  89. De Caterina T, Giannesssi D, Crea F, et al (1984) Inhibition of platelet function by injectable isosorbide dinitrate. Am J Cardiol 53:1683–1687

    Article  PubMed  Google Scholar 

  90. Drummer C, Valta-Seufzer U, Karrenbrock B, Heim JM, Gerzer R (1991) Comparison of antiplatelet properties of molsidomine, isosorbide-5-mononitrate and placebo in healthy volunteers. Eur Heart J 12:541–549

    PubMed  CAS  Google Scholar 

  91. Wallen NH, Larsson PT, Broijersen A, Andersson A, Hjemdahl P (1993) Effects of oral dose of isosorbide dinitrate on platelet function and fibrinolysis in healthy volunteers. Br J Clin Pharmacol 35:143–151

    PubMed  CAS  Google Scholar 

  92. Chirkov YY, Naujalis JI, Sage RE, Horowitz JD (1993) Antiplatelet effects of nitroglycerin in healthy subjects and in patients with stable angina pectoris. J Cardiovasc Pharmacol 21:384–389

    Article  PubMed  CAS  Google Scholar 

  93. Karlberg KE, Ahlner J, Henriksson P, Torfgard K, Sylven C (1993) Effects of nitroglycerin on platelet aggregation beyond the effects of acetylsalicylic acid in healthy subjects. Am J Cardiol 71:361–364

    Article  PubMed  CAS  Google Scholar 

  94. Werns SW, Rote WE, Davis JH, Guevara T, Lucchesi BR (1994) Nitroglycerin inhibits experimental thrombosis and reocclusion after thrombolysis. Am Heart J 127: 727–737

    Article  PubMed  CAS  Google Scholar 

  95. Plotkine M, Allix M, Guillou J, Boulu R (1991) Oral administration of isosorbide dinitrate inhibits arterial thrombosis in rats. Eur J Pharmacol 201:115–116

    Article  PubMed  CAS  Google Scholar 

  96. Lam JYT, Chesebro JH, Fuster V (1988) Platelets, vasoconstriction, and nitroglycerin during arterial wall injury. A new antithrombotic role for an old drug. Circulation 78: 712–716

    Article  PubMed  CAS  Google Scholar 

  97. Gebalska J (1990) Platelet adhesion and aggregation in relation to clinical course of acute myocardial infarction. M.D. thesis, Warsaw, in Polish

    Google Scholar 

  98. Diodati J, Theroux P, Latour JG, et al (1990) Effects of nitroglycerin at therapeutic doses on platelet aggregation in unstable angina pectoris and acute myocardial infarction. Am J Cardiol 66:683–688

    Article  PubMed  CAS  Google Scholar 

  99. Sinzinger H, Virgolini I, O’Grady J, Rauscha F, Fitscha P (1992) Modification of platelet function by isosorbide dinitrate in patients with coronary artery disease. Thromb Res 65:323–335

    Article  PubMed  CAS  Google Scholar 

  100. De Caterina R, Giannessi A, Bernini W, Mazzone A (1988) Organic nitrates: Direct antiplatelet effects and synergism with prostacyclin. Antiplatelet effects of organic nitrates. Thromb Haemost 59:207–211

    PubMed  Google Scholar 

  101. Sinzinger H, Fitscha P, O’Grady J, et al (1990) Synergistic effect of prostaglandin Ex and isosorbide dinitrate in peripheral vascular disease. Lancet 335:627–628

    Article  PubMed  CAS  Google Scholar 

  102. Levin RL, Weksler BB, Jaffe EA (1982) The interaction of sodium nitroprusside with human endothelial cells and platelets: Nitroprusside and prostacyclin synergistically inhibit platelet function. Circulation 66:1299–1307

    Article  PubMed  CAS  Google Scholar 

  103. Hines R, Barash PG (1989) Infusion of sodium nitroprusside induces platelet dysfunction in vitro. Anesthesiology 71:805–806

    Article  Google Scholar 

  104. Wautier JL, Weill D, Kadeva H, Maclouf J, Soria C (1989) Modulation of platelet function by SIN-1A. J Cardiovasc Pharmacol 14:S111-S114

    Google Scholar 

  105. Hogg N, Darley-Usmar VM, Wilson MT, Moncada S (1993) Oxidation of alpha-toco-pherol in human low density lipoprotein by the simultaneous generation of superoxide and nitric oxide. FEBS Lett 326:199–203

    Article  PubMed  CAS  Google Scholar 

  106. Lefer DJ, Nakanishi K, Vinten-Johansen J (1993) Endothelial and myocardial cell protection by a cysteine-containing nitric oxide donor after myocardial ischemia and reperfusion. J Cardiovasc Pharmacol 22 (Suppl 7): S34-S43

    Google Scholar 

  107. Radomski MW, Rees DD, Dutra A, Moncada S (1992) S-nitrosoglutathione inhibits platelet activation in vitro and in vivo. Br J Pharmacol 107:745–749

    PubMed  CAS  Google Scholar 

  108. de Belder AJ, MacAllister R, Radomski MW, Moncada S, Vallance PJ (1994) Effects of S-nitrosoglutathione in the human forearm circulation: Evidence for selective inhibition of platelet activation. Cardiovasc Res 28:691–694

    Article  PubMed  Google Scholar 

  109. Langford EJ, Brown AS, Wainwright RJ, et al (1994) Inhibition of platelet activity by S-nitrosoglutathione during coronary angioplasty. Lancet 344:1458–1460

    Article  PubMed  CAS  Google Scholar 

  110. ISIS-2 (Second International Study of Infarct Survival) (1988) Collaborative Group: Randomized trial of intravenous streptokinase, oral aspirin, both or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 2:349–360

    Google Scholar 

  111. ISIS-3 (1992) A randomized comparison of streptokinase vs tissue plasminogen activator vs anistreplase, and of aspirin plus heparin vs aspirin alone among 41,299 cases of suspected acute myocardial infarction. Lancet 339:753–770

    Article  Google Scholar 

  112. Patrono C (1989) Aspirin and human platelets: From clinical trials to acetylation of cyclooxygenase and back. TIPS 10:453–458

    PubMed  CAS  Google Scholar 

  113. Fernandez-Ortiz A, Jang IK, Fuster A (1994) Antiplatelet and antithrombin therapy. Coronary Artery Disease 5:297–305

    Article  PubMed  CAS  Google Scholar 

  114. Jensen BO, Holmsen H (1995) Nitric oxide (NO)-platelet interactions: Inhibition is independent of the prostanoid and ADP pathways. Platelets (In press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radomski, M.W., Salas, E. (1995). Platelet Regulation and Damage in Vascular Thrombotic and Septic Disorders. In: Fink, M.P., Payen, D. (eds) Role of Nitric Oxide in Sepsis and ADRS. Update in Intensive Care and Emergency Medicine, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79920-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79920-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79922-8

  • Online ISBN: 978-3-642-79920-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics