Advertisement

Sorption Properties of Biofilms

  • H.-C. Flemming
  • J. Schmitt
  • K. C. Marshall
Part of the Environmental Science book series (ESE)

Abstract

The distribution and fate of pollutants in soils, in sediments and in the water phase is highly influenced by sorption processes. Sorbing surfaces and materials can provide a sink for dissolved matter. If the conditions change, desorption may occur and, thus, turn the former sorbent into a new source of pollutants.

Keywords

Activate Sludge Extracellular Polymer Substauces Dissolve Organic Matter Sorption Property Extracellular Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams LF, Ghiorse WC (1987) Characterization of extracellular Mn2+-oxidizing activity and isolation of a Mn2+ oxidizing protein from Leptothrix discophora SS-1. J Bacteriol 169:1279–1285Google Scholar
  2. Aickin RM, Dean ACR, Cheetham AK, Skarnulis AJ (1979) Electron microscope studies on the uptake of lead by a Citrobacter sp. Microbios Lett 7:7–14Google Scholar
  3. Aiking H, Stijnman A, van Garderen C, van Heerikhuizen H, van’t Riet J (1984) Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl Environ Microbiol 47:374–377Google Scholar
  4. Altman E, Brisson J-R, Perry MB (1986) Structural studies of the capsular polysaccharide from Haemophilus pleumoniae serotype. Biochem Cell Biol 64:707–716Google Scholar
  5. Armstrong SM, Bärlocher F (1989a) Adsorption and release of amino acids from epilithic biofilms in streams. Freshwater Biol 22:153–159Google Scholar
  6. Armstrong SM, Bärlocher F (1989b) Adsorption of three amino acids to biofilms on glass beads. Arch Hydrobiol 115:391–399Google Scholar
  7. Aspinall GO (1982) General introduction. In: Aspinall GO (ed): The polysaccharides. Acad Press, New York, pp 1–18Google Scholar
  8. Bannerjee S, Duttagupta S, Chakrabarty AM (1983) Production of emulsifying agent during growth of Pseudomonas cepacia with 2,4,5-trichlorophenoxyacetic acid. Arch Microbiol 135:110–114Google Scholar
  9. Baughman GL, Paris DF (1981) Microbioal bioconcentration of organic pollutants from aqueous systems. Crit Rev Microbiol 8:205–228Google Scholar
  10. Bell JP, Teszos M (1987) Removal of hazardous organic pollutants by biomass adsorption. J Wat Poll Contr Fed 59:191–198Google Scholar
  11. Beveridge TJ (1981) Ultrastructure, chemistry and function of the bacterial wall. Int Rev Cytol 72:229–317Google Scholar
  12. Beveridge TJ (1984) Bioconversion of inorganic materials: mechanisms of the binding of metallic ions to bacterial walls and the possible impact on microbial ecology. In: Klug MJ, Reddy CA (eds) Current perspectives in Microbial Ecology. Am Soc Microb, Washington, DC, pp 601–607Google Scholar
  13. Beveridge TJ, Koval SF (1981) Binding of metals to cell envelopes of Escherichia coli K-12. Appl Environ Microbiol 42:325–335Google Scholar
  14. Beveridge TJ, Murray RGE (1976) Uptake and retention of metals by cell walls of Bacillus subtilis. J Bact 127:1502–1518Google Scholar
  15. Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bact 141:876–887Google Scholar
  16. Beveridge TJ, Meloche JD, Fyfe WS, Murray RGE (1983) Diagenesis of metals chemically complexd to bacteria: Laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments. Appl Envir Microbiol 45:1094–1108Google Scholar
  17. Bicknell B (1986) Interaction between soluble and surface-active substrates, bacteria and particles in a coral reef lagoon. PhD Thesis, The University of New South Wales, Kensington, NSW, AustraliaGoogle Scholar
  18. Black JP, Ford TE, Mitchell R (1988) Corrosion behaviour of metal-binding exopolymers from iron- and manganese-depositing bacteria. Corrosion ’88, March 21–25, St Lous, Missouri; paper No. 94Google Scholar
  19. Boes M, Caspary H (1987) Sielhautuntersuchungen — eine erfolgversprechende Methode zum Auffinden von Schwermetallemittenten im Kanalnetz. Korr Abw 34, 123–128Google Scholar
  20. Boogerd FC, de Vrin JPM (1987) Manganese oxidation by Leptothrix discophora. J Bact 169:498–494Google Scholar
  21. Brierley CL (1990) Metal immobilization using bacteria. In: Ehrlich HC, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York; pp 303–323Google Scholar
  22. Brierley CL, Kelly DP, Seal KJ, Best DJ (1985 a) Biotechnology principles and applications. Blackwell Scient, Oxford, pp 163–212Google Scholar
  23. Brierley JA, Brierley CL (1980) Biological methods to remove selected inorganic pollutants from uranium mine wastewater. In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of Ancient and Modern Environments. Austral Acad Sci, Canberra; pp 661–667Google Scholar
  24. Brierley JA, Brierley CL, Dreher KT (1980) Removal of selected inorganic pollutants from uranium mine waste water by biological methods. In: Brawner CO (ed) First Intern Conf on Uranium Mine Waste Disposal. Soc Mining Engg Am Inst Mining, Metallurg and Petrol Eng, New York; pp 365–376Google Scholar
  25. Brierley JA, Brierley CL, Decker RF, Goyak GM (1988) Metal recovery. US Patent 4,789,481Google Scholar
  26. Brinckman FE, Jackson JA, Blair WR, Olson GJ, Iverson WP (1983) Ultratrace speciation and biogenesis of methyltin transport species in estuarine waters. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water (NATO Conference Series 4:9) Plenum Press, New York, pp 39–72Google Scholar
  27. Brock TD, Gustafson J (1976) Ferric iron reduc tion by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571Google Scholar
  28. Brown MJ, Lester JN (1979) Metal removal in activated sludge: the role of bacterial extracellular polymers. Wat Res 13:817–837Google Scholar
  29. Brown MJ, Lester JN (1982 a) Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge — I. Effects of metal concentrations. Wat Res 16:1539–1548Google Scholar
  30. Brown MJ, Lester JN (1982 b) Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge — II. Effects of mean cell retention time. Wat Res 16:1549–1560Google Scholar
  31. Bruus JH, Nielsen PH, Keiding K (1992) On the stability of activated sludge flocs with implications to dewatering. Wat Res 26:1597–1604Google Scholar
  32. Cameron JA, Bunch CL, Huang SJ (1988) Microbial degradation of synthetic polymers. In: Houghton DR, Smith RN, Eggins HOW (eds) Biodeterioration 7, Elsevier Appl Sci, New York; pp 553–561Google Scholar
  33. Carlson CG (1979) Improved filtration of biosludges by enzyme treatment. Filtr Sep Jan/Feb 1979, pp 82–84Google Scholar
  34. Chafetz HS (1986) Marine peloids: a product of bacterially induced precipitation of calcite. J Sediment Petrol 56:812–817Google Scholar
  35. Characklis WG (1990) Biofilm processes. In: Charaeklis WG and Marshall KC (eds) Biofilms. John Wiley, New York, pp 195–232Google Scholar
  36. Characklis WG, Marshall KC (eds)(1990) Biofilms. John Wiley, New YorkGoogle Scholar
  37. Characklis WG, Turakhia MH, Zelver N (1990) Transport and interfacial transfer phenomena. In: Characklis WG, Marshall KC (eds) Biofilms. John Wiley, New York; pp 341–394Google Scholar
  38. Charley RC, Bull AT (1979) Bioaccumulation of silver by a multispecies community of bacteria. Arch Microbiol 123:239–244Google Scholar
  39. Chen XH, Vedry B, Rogalla F, Lesty Y, Lesavre J (1988) Copper fixation by biofilms in waste water treatment process. In: Astruc M, Lester JN (eds) Heavy metal hydrological cycle. Selper Ltd, London; pp 563–570Google Scholar
  40. Christensen BE (1989) The role of extracellular polysaccharides in biofilms. J Biotec 10, pp 181–196Google Scholar
  41. Christensen BE, Characklis WG (1990) Physical and chemical properties of biofilms. In: Characklis WG, Marshall KC (eds) Biofilms. John Wiley, New York; pp 93–130Google Scholar
  42. Cohen GH, Johnstone DB (1964) Extracellular polysaccharides of Azotobacter vinlandii. J Bact 88, pp 329–335Google Scholar
  43. Coleman RN, Paran JH (1991) Biofilm concentration of chromium. EnvironTechnol 12:1079–1094Google Scholar
  44. Cooney JJ, Hallas LE, Means JC (1981) Tin and microbes in the Chesepeake Bay, USA. In: Proc of the 3rd Intern Conf on heavy metals in the environment, Amsterdam. The Netherlands, Sept 14–18, pp 413–482, CEP Consultants Ltd, EdinburghGoogle Scholar
  45. Corpe WA (1975) Metal-binding properties of surface materials from marine bacteria. Dev Ind Microbiol 16:249–255Google Scholar
  46. Costerton JW, Boivin J (1987) Microbially influenced corrosion. In: Mittelman MW, Geesey GG (eds) Biological fouling of industrial water systems. A problem solving approach. Wat Micro Associates, San Diego, pp 56–76Google Scholar
  47. Costerton JW, Boivin J (1991) Biofilms and Corrosion. In: Flemming H-C, Geesey GG (eds) Biofouling and biocorrosion in industrial water systems. Springer, Berlin, Heidelberg New York, pp 195–204Google Scholar
  48. Costerton JW, Irvin RT (1981) The bacterial glycocalyx in nature anddisease. Ann Rev Microbiol 35:299–324Google Scholar
  49. Costerton JW, Cheng K-J, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 41:435–464Google Scholar
  50. Costerton JW, Marrie TJ, Cheng K-J (1985) Phenomena of bacterial adhesion. In: Savage DC, Fletcher MM (eds) Bacterial adhesion. Plenum Press, New York 1985; pp 3–44Google Scholar
  51. Cowen JP, Silver MW (1984) The association of iron and manganese with bacteria on marine macro particulate material. Science 224:1340–1342Google Scholar
  52. Dagostino L, Goodman A, Marshall KC (1991) Physiological responses induced in bacteria adhering to surfaces. Biofouling 4:113–119Google Scholar
  53. Deans JR, Dixon BG (1992) Uptake of Pb2+ and Cu2+ by novel biopolymers. Wat Res 26:469–472Google Scholar
  54. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Ann Rev 28:73–153Google Scholar
  55. Doyle RJ (1989) How cell walls of Gram-positive bacteria interact with metal ions. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. John Wiley, New York; pp 27–293Google Scholar
  56. Doyle RJ, Matthews TH, Streips UN (1980) Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. J Bact 1431:471–480Google Scholar
  57. Dudman WF (1977) The role of surface polysaccharides in natural environments. In: Sutherland IW (ed) Surface carbohydrates of the procaryote cell. Acad. Press, New York, pp 537–414Google Scholar
  58. Dugan PR (1975) Bioflocculation and the accumulation of chemicals by floc-forming organisms. EPA-600/2–75–032, September 1975, Nat Tech Inform Service, Springfield, VAGoogle Scholar
  59. Dugan PR, Pickrum HM (1972) Removal of mineral ions from water by microbially produced polymers. Proc 27th Ind Waste Conf, Purdue Univ, Lafayette, IN; pp 1019–1032Google Scholar
  60. Duxbury T (1985) Ecological aspects of heavy metal responses in microorganisms. Adv Microb Ecol 8:185–235Google Scholar
  61. Ehrlich HL (1981) The geomicrobiology of iron. In: Geomicrobiology. Marcel Dekker, New York; pp 165–201Google Scholar
  62. Ehrlich HL (1990) Geomicrobiology. Marcel Dekker, New York, Basel; pp 557–602Google Scholar
  63. Eighmy TT, Maratea D, Bishop PL (1983) Electron microscopic examination of wastewater biofilm formation and structural components. Appl Environ Microbiol 45:1921–1931Google Scholar
  64. Ferris FG (1989) Metallic interactions with the outer membrane of Gram-negative bacteria. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. John Wiley, New York; pp 295–323Google Scholar
  65. Ferris FG, Beveridge TJ, Fyfe WS (1986) Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature (London) 320:609–611Google Scholar
  66. Ferris FG, Fyfe WS, Beveridge TJ (1987a) Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem Geol 63:225–232Google Scholar
  67. Ferris FG, Fyge WS, Beveridge TJ (1987b) Manganese oxide deposition in a hot spring microbial mat. Geomicrobiol J 5:33–42Google Scholar
  68. Ferris FG, Schultze S, Witten TC, Fyfe WS, Beveridge TJ (1989) Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl Envir Microbiol 55:1249–1257Google Scholar
  69. Filip Z (1975) Wechselbeziehungen zwischen Mikroorganismen und Tonmineralien und ihre Auswirkung auf die Bodendynamik. Habilitationsschrift, Universität GießenGoogle Scholar
  70. Flemming HC (1991) Biofilms as a particular form of microbial life. In: Flemming HC, Geesey GG (eds) Biofouling and Biocorrosion in Industrial Wat Systems. Springer, Berlin Heidelberg New York, pp 1–7Google Scholar
  71. Flemming HC, Ruck W (1990) Lokalisierung von Schadstoffeinleitern vom Kanalnetz aus. In: Wagner R (Hrsg) Wasserkalender. Verlag Erich Schmidt, Berlin, pp 115–133Google Scholar
  72. Flemming H-C, Schaule G (1989) Biofouling auf Umkehrosmose- und Ultrafiltrationsmembranen. Teil II: Analyse und Entfernung des Belages. Vom Wasser 73:287–301Google Scholar
  73. Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1990) Remobilisation of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl Envir Microbiol 56:3191–203Google Scholar
  74. Fletcher MM (1985) Effect of solid surfaces on the activity of attached bacteria. In: Savage DD, Fletcher MM (eds) Bacterial adhesion. Plenum Press, New York, pp 339–362Google Scholar
  75. Fletcher MM (1991) The physiological activity of bacteria attached to solid surfaces. Adv Microb Physiol 32:53–85Google Scholar
  76. Ford T, Mitchell R (1993) Microbial transport of toxic metals. In: Mitchell R (ed) Environmental Microbiology. John Wiley, New York, pp 83–101Google Scholar
  77. Friedrich E, Holesovsky U (1987) Enzymatische Schlamm-Stabilisierung. Entsorgungs Praxis 10/87:474–480Google Scholar
  78. Fry JC, Day MJ (1990) Plasmid transfer in the epilithon. In: Fry JC, Day MJ (eds) Bacterial genetics in natural environments. Chapman and Hall, London, pp 55–80Google Scholar
  79. Gadd GM (1988) Accumulation of metals by microorganisms and algae. In: Rehm HJ (ed) Biotechnology, Vol 6 B: Special microbial processes. VCH Verlags, Weinheim, Germany, pp 401–433Google Scholar
  80. Gantzer CJ et al. (1989) Group report: Exchange processes at the fluid-biofilm interface. In: Characklis WG, Wilderer P (eds) Structure and function of biofilms. John Wiley, New York, pp 73–89Google Scholar
  81. Gee AR, Dudeney AWL (1988) Adsorption and crystallisation of gold at biological surfaces. In: Norris PR, Kelly DP (eds) Biohydrometallurgy. Science and Technol Letters, Kew Surrey, UK, pp 437–451Google Scholar
  82. Geesey GG, Jang L (1989) Inteactions between metal ions and capsular polymers. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. John Wiley, New York, pp 325–357Google Scholar
  83. Geesey G, Jang L (1990) Extracellular polymers for metal binding. In: Ehrlich HC, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 223–247Google Scholar
  84. Geesey GG, Mucht R, Costerton JW, Green RB (1978) Sessile bacteria: an important component of themicrobial population in small mountain streams. Limnol Oceanogr 23:1214–1223Google Scholar
  85. Geesey GG, Jang L, Jolley JG, Hankins MR, Iwaoka T, Griffiths PR (1988) Binding of metal ions by extracellular polymers of biofilm bacteria. Proc Int Conf Wat Wastewater Microbiol, Newport Beach, Ca; 8–11 Feb 1988; Vol. I, 26.1–26.11Google Scholar
  86. Gilmour CC, Tuttle JH, Means JC (1985) Tin methylation in sulfide bearing sediments. In: Sieglo AC, Hattori A (eds) Marine and estuarine biogeochemistry. Lewis Publishers Inc Chelsea, MI, pp 239–258Google Scholar
  87. Goddard PA, Bull AT (1988a) Accumulation of silver by growing and non-growing populations of Citrobacter intermedius B 6. Eur J Appl Microbiol 31:314–319Google Scholar
  88. Gold MS, Genetelli EJ (1978) Heavy metal complexation behavior in anaerobically digested sludges. Wat Res 12:505–512Google Scholar
  89. Guezennec J, Therène M (1988) A study of the influence of cathodic protection on the growth of SRB and corrosion in marine sediments by electrochemical techniques. In: Sequeira CAC, Tiller AK (eds) Microbial corrosion 1. Elsevier Appl Sci, London, New York, pp 256–264Google Scholar
  90. Gulas V, Bond M (1979) Use of exocellular polymers for thickening and dewatering activated sludge. J Wat Poll Contr Fed 51:798–807Google Scholar
  91. Gutekunst B (1988) Sielhautuntersuchungen zur Einkreisung schwermetallhaltiger Einleitungen. Schriftenreihe des Instituts für Siedlungswasserwirtschaft, UniversitätKarlsruhe, Band 49Google Scholar
  92. Gutekunst B (1989) Wechselwirkung zwischen Schwermetallen und Sielhaut. GWF Wasser Abwasser 130, 456–462Google Scholar
  93. Gutekunst B, Hahn HH (1985) Schwermetallgehalte in Sielhäuten — eine Möglichkeit zum Nachweis von Einleitungen schwermetallhaltigen Abwassers in die Kanallisation. Vom Wasser 65:127–137Google Scholar
  94. Hancock IC (1986) The use of gram-positive bacteria for the removal of metals from aqueous solution. In: Thompson R (ed) Trace Metal Removal from Aqueous Solutions. The Royal Society of Chemistry, London; pp 25–43Google Scholar
  95. Hartinger, L (1975) Komplexchemie in der Abwassertechnik. Vom Wasser 44, 69–117Google Scholar
  96. Harvey RW (1981) Lead-bacterial interactions in an estuarine salt marsch microlayer. PhD thesis, Stanford University, Stanford, 161 ppGoogle Scholar
  97. Harvey RW, Luoma SN (1985) Effect of adherent bacteria and bacterial extracellular polymers upon assimilation by Macoma balthica of sediment-bound Cd, Zn and Ag. Mar Ecol 22:281–289Google Scholar
  98. Hintelmann H, Ebinghaus R, Wilken R-D (1993) Accumulation of mercury(II) and methylmercury by microbial biofilms. Wat. Res. 27, pp 237–242Google Scholar
  99. Hughes MN, Poole RK (1989) Metals and micro-organisms. Chapman and Hall, London, pp 93–140Google Scholar
  100. Hutchins SR, Davidson MS, Brierley JA, Brierley CL (1986) Microorganisms in reclamation of metals. Ann Rev Microbiol 40:311–336Google Scholar
  101. Jackson TA (1978) The biogeochemistry of heavy metals in polluted lakes and streams at Flin Flon, Canada, a proposed method for limiting heavy-metal pollution of natural rivers. Environ Geol 2:173–189Google Scholar
  102. Jang LK, Brand W, Resong M, Mainieri W, Geesey GG (1990a) Feasibility of using alginate to absorb dissolved copper from aqueous media. Environ Prog 9:269–281Google Scholar
  103. Jang LK, Geesey GG, Lopez SL, Eastman SL, Wichlacz PL (1990b) Use of a gel-forming biopolymer directly dispensed into a loop fluidized bed reactor to recover dissolved copper. Wat Res 24:889–897Google Scholar
  104. Johnston CG, Kipphut GW (1988) Microbially mediated Mn(II) oxidation in an oligotrophic Arctic lake. Appl Environ Microbiol 54:1140–1145Google Scholar
  105. Joyce GH, Dugan PR (1970) The role of Hoc-forming bacteria in BOD removal from waste water. Dev Ind Microbiol 11:377–386Google Scholar
  106. Jungschaffer G, Reiner R, Sprössler B, Scorialo A (1988) Verfahren zum Verbessern der Entwässerbarkeit von biologischem Klärschlamm. Eur Pat 0 291 665 B 1 v. 25.3.88Google Scholar
  107. Kaesche H (1990) Die Korrosion der Metalle. 3. Auflage. Springer, Berlin Heidelberg New YorkGoogle Scholar
  108. Kaplan D, Christiaen D, Shoshana A (1987) Chelating properties of extracellular polysaccharides from Chlorella spp. Appl Environ Microbiol 53:2953–2956Google Scholar
  109. Kelly DP, Norris PR, Brierley CL (1979) Microbiological methods for the extraction and recovery of metals. In: Bull AT, Ellwood DC, Ratledge C (eds) Microbial Technology: Current Status, Future Prospects. Cambridge Univ Press, Cambride, pp 263–308Google Scholar
  110. Kennedy AFD, Sutherland IW (1987) Analysis of bacterial exopolysaccharides. Biotechnol Appl Biochem 9:12–19Google Scholar
  111. Kennedy KJ, Lu J, Mohn WW (1992) Biosorption of chlorophenols to anaerobic granular sludge. Wat Res 26:1085–1092Google Scholar
  112. Kim SH, Pirbazari M (1989) Bioactive adsorber model for industrial wastewater treatment. J Environ Eng 115:1235–1256Google Scholar
  113. Koch B, Ostermann M, Hoke H, Hempel D-C (1991) Sand and activated carbon as biofilm carriers for microbial degradation of phenols and nitrogen containing aromatic compounds. Wat Res 25:1–8Google Scholar
  114. Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments. Univ. Oldenburg, P.O.Box 2541, 26015 Oldenburg, Germany, ISBN 3-8142-0483-2Google Scholar
  115. Krynitsky JA, McLaren GW (1962) Some effects of microbial growths on surfactant properties of fuels. Biotechnol Bioeng IV, pp 357–367Google Scholar
  116. Lakshmanan VI, Chrisison J, Knapp RA, Scharer JM, Snmugasunderm V (1986) A review of bioadsorption techniques to recover heavy metals from mineral-processing streams. In: Proc Second Ann Gen Meet Biominet, CANMET Special Publication SP85–6, Can Gov Publ Centre, Ottawa, pp 75–96Google Scholar
  117. LaMotta EJ (1976) Internal diffusion and reaction in biological films. Environ Sci Technol 10:765–769Google Scholar
  118. LaRivière JWM (1955) The productivity of surface active compounds by micro-organisms and its possible significance in oil recovery. Ant Leuvenhoek 21:1–27Google Scholar
  119. Laschka D and Trumpp M (1991) Sielhautuntersuchungen zur Lokalisierung von AOX-Eminttenten im Kanalnetz. Korr. Abw. 38:495–496Google Scholar
  120. Laschka D, Braun F, Kalbfus W, Metzner G (1989) Schadstoffe im Klärschlamm. Korr Abw 36:706–713Google Scholar
  121. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bact 173:6558–6567Google Scholar
  122. Lewandowski Z, Stoodley P, Altobelli S, Fukushima E (1993) Hydrodynamic and kinetics in biofilm systems — recent advances and new problems. 2nd Int Specialized Conf on Biofilm Reactors, 30.9.–1.10., Paris, pp 313–319Google Scholar
  123. Lindqvist R, Enfield CG (1992) Biosorption of Dichlorodiphenyltrichlormethane and hexachlorobenzene in groundwater and its implications for facilitated transport. Appl Environ Microbiol 58:2211–2218Google Scholar
  124. Lundgren DG (1989) Biotic and abiotic release of inorganic substances exploited by bacteria. In: Poindexter JS, Leadbetter ER (eds) Bacteria in nature. Plenum Press, New York, pp 293–335Google Scholar
  125. Lundgren DG, Boucheron J, Mahoney W (1983) Geomicrobiology of iron: mechanism of ferric iron reduction. In: Rossi G, Torma AE (eds) Recent Progress in Biohydrometallurgy. Assoc Mineraria Sarda, Iglesias, Italy, pp 55–70Google Scholar
  126. Luoma SN, Davis JA (1983) Requirements for modeling trace metal partitioning in oxidized estuarine sediments. Mar Chem 12:159–181Google Scholar
  127. Macaskie LE, Dean ACR (1987a) Use of immobilized biofilm of Citrobacter sp. for the removal of uranium and lead from aqueous flow. Enz Microbiol Technol 9:2–4Google Scholar
  128. Macaskie LE, Dean ACR (1987b) Uranium accumulation by a Citrobacter sp. immobilized as biofilm onvarious support materials. In: Neijssel OM, van der Meer RR, Luyben KChAM (eds) Proc 4th Eur Cong Biotehcnol, Elsevier, Amsterdam, pp 37–40Google Scholar
  129. Macaskie LE, Dean ACR (1988) Uranium accumulation by immobilized biofilms on a Citrobacter sp. In: Norris PR, Kelly DP (eds) Biohydrometallurgy. ScienceTechnol Lett, Kew Surrey, UK, pp 556–557Google Scholar
  130. Macaskie LE, Dean ACR, Cheetham AK, Jakeman RJB, Skarnulis AJ (1987c) Cadmium accumulation by a Citrobacter species: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J Gen Microbiol 133:539–546Google Scholar
  131. Mackay D (1982) Correlation of bioconcentration factors. Environ Sci Technol 16:274–278Google Scholar
  132. MacNicol RD, Beckett PHT (1989) The distribution of heavy metals between the principal components of digested sewage sludge. Wat Res 23:199–206Google Scholar
  133. MacRae IC (1986) Removal of chlorinated hydrocarbons from water and wastewater by bacterial cells adsorbed to magnetite. Wat Res 20:1149–1152Google Scholar
  134. Mann S (1988) Molecular recognition in biomineralization. Nature (London) 332:119–124Google Scholar
  135. Mann S, Sparks NHC, Scott GHE, de Vrind-de Jong EW (1988) Oxidation of manganese and formation of Mn304 (hausmannite) by spore coats of a marine Bacillus sp. Appl Environ Microbiol 54:2140–2143Google Scholar
  136. Marshall KC (1969a) Orientation of clay particles sorbed on bacteria possessing different ionogenic surfaces. Biochim Biophys Acta 193:472–474 (?)Google Scholar
  137. Marshall KC (1969b) Studies by microelectrophoretic and microscopic techniques of the sorption of illite and montmorillonite to Rhizobia. J Gen Microbiol 56:301–306Google Scholar
  138. Marshall KC (1979) Biogeochemistry of manganese minerals. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam pp 253–292Google Scholar
  139. Marshall KC (1988) Adhesion and growth of bacteria at surfaces in oligotrophic habitats. Can J Microb 34:503–506Google Scholar
  140. Marshman NA, Marshall KC (1981) Some effects of montmorillonite on the growth of mixed microbial cultures. Soil Biol Biochem 13:135–141Google Scholar
  141. Mateson JV, Characklis WG (1976) Diffusion into microbial aggregates. Wat Res 10:877–881Google Scholar
  142. McLean RJC, Beveridge TJ (1988) Influence of metal ion charge on their binding capacity to bacterial capsules. Abst 88th Ann Meet Am Soc Microbiol Q 146, pp 307Google Scholar
  143. McLean RJC, Beveridge TJ (1990) Metal-binding capacity of bacterial surfaces and their ability to form mineralized aggregates. In: Ehrlich HC, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 185–222Google Scholar
  144. Mittelman MW, Geesey GG (1985) Copper-binding characteristics of exopolymers from a freshwater-sediment bacterium. Appl Environ Microbiol 49:846–851Google Scholar
  145. Moriarty DJW, Hayward AC (1982) Ultrastructure of bacteria and the proportion of Grampositive bacteria in marine sediments. Microb Ecol 8:1–14Google Scholar
  146. Nealson KA (1983) The microbial manganese cycle. In: Krumbein WE (ed) Microbial Geochemistry. Blackwell Sci Publ, Oxford, pp 98–155Google Scholar
  147. Nealson KA, Ford J (1982) Surface enhancement of bacterial manganese oxidation: implications for aquatic environments. Geomicrobiology J 2:88–91Google Scholar
  148. Neu TR, Marshall KC (1991) Microbial “footprints” — a new approach to adhesive polymers. Biofouling 3:101–112Google Scholar
  149. Neufeld RD, Hermann ER (1975) Heavy metal removal by acclimated activated sludge. J Wat Poll Contr Fed 47:310–329Google Scholar
  150. Nichols PD, Henson JM, Guckert JB, Nivens DE, White DC (1985) Fourier transforminfrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteriapolymer mixtures and biofilms. J Microbiol Meth 4:79–94Google Scholar
  151. Nichols WW, Dorrington SM, Slack MPE, Walmsley HL (1988) Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother 32:518–523Google Scholar
  152. Norberg A (1983) Production of extracellular polysaccharide by Zoogloea ramigera and its use as an adsorbing agent for heavy metals. PhD dissertation, University of Lund, Lund, Sweden 1983Google Scholar
  153. Norberg AB, Persson H (1984) Accumulation of heavy-metal ions by Zoogloea ramigera. Biotech Bioeng 26:239–246Google Scholar
  154. O’Shea TA, Mancy KH (1979) The effect of pH and hardness metal ions on the competitive interaction between trace metal ions and inorganic and organic complexing agents found in natural waters. Wat Res 12:703–711Google Scholar
  155. Palmer RJ, Friedman EI (1990) Wat. relations and photosynthesis in the cryptoendolithic microbial habitats of hot and cold deserts. Microb Ecol 19:111–118Google Scholar
  156. Paris DF, Lewis DL, Barnett JT (1977) Bioconcentration of Toxaphene by microorganisms. Bull Envir Cont Toxicol 17:564–572Google Scholar
  157. Pedersen K (1990) Biofilm development on stainless steel and PVC surfaces in drinking water. Wat Res 24:239–243Google Scholar
  158. Pettibone GW, Cooney JJ (1988) Toxicity of methyltins to microbial populations in estuarine sediments. J Ind Microbiol 2:373–378Google Scholar
  159. Plessner O, Klapatch T, Guerinot ML (1993) Siderophore utilization by Bradorhi zobium japonicum. Appl Environ Microbiol 59:1688–1690Google Scholar
  160. Pooley FD (1982) Bacteria accumulate silver during leaching of sulphide ore minerals. Nature 296:642–643Google Scholar
  161. Potts M (1994) Desiccation tolerance of procaryotes. Microb Rev 58:755–805Google Scholar
  162. Ramsay B, McCarthy J, Guerra-Santos L, Kaeppeli O, Fiechter A (1988) Biosurfactant production and diauxic growth of Rhodococcus aurantiacus when using n-alkanes as the carbon source. Can J Microbiol 34:1209–1212Google Scholar
  163. Rees DA (1976) Stereochemistry and binding behavior of carbohydrate chains. In: Whelan WJ (ed) Biochemistry of carbohydrates, Vol. 5. University Park Press, Baltimore, pp 1–42Google Scholar
  164. Rendelman JA (1978a) Metal-polysaccharide complexes. Part I. Food Chem 3:47–79Google Scholar
  165. Rendelman JA (1978 b) Metal-polysaccharide complexes. Part II. Food Chem 3:127–162Google Scholar
  166. Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291Google Scholar
  167. Rosenberg E, Kaplan N (1986) Surface-active properties of Acinetobacter exopolysaccharides. In: Inouye M (ed) Bacterial outer membranes as a model system. Interscience Publ, New York, pp 311–342Google Scholar
  168. Rudd T, Sterritt RM, Lester JN (1983) Stability constants and complexation capacities of complexes formed between heavy metals and extracellular polymers from activated sludge. J Chem Tech Biotechnol 33A:374–380Google Scholar
  169. Rudd T, Sterrittt RM, Lester JN (1984) Formation and conditional stability constants of complexes formed between heavy metals and bacterial extracellular polymers. Wat Res 18:379–384Google Scholar
  170. Sar N, Rosenberg E (1983) Emulsifier production by Acinetobacter calcoaceticus strain. Curr Microbiol 9:309–314Google Scholar
  171. Schaule G (1992) Primäradhäsion von Pseudomonas diminuta an Filtermembranen. Dissertation, Universität TübingenGoogle Scholar
  172. Schaule G, Flemming HC, Poralla K (1992) Forces involved in primary adhesion of Pseudomonas diminuta to filtration membranes. 5th Int Conf on Microb Ecol, Barcelona, Sept 8–12 1992Google Scholar
  173. Schmitt J, Nivens D, Flemming HC, Symader W, White DC (1992) In-situ-Monitoring der Entwicklung von Biofilmen mit Hilfe der FTIR-ART-Spektroskopie und die Rolle der EPS für die Sorptionseigenschaften von Biofilmen. Jahrestagung der Fachgruppe Wasserchemie in der GdCh, DresdenGoogle Scholar
  174. Scott JA, Palmer SJ (1988) Cadmium bio-sorption by bacterial exopolysaccharide. Biotechnol Lett 10:21–24Google Scholar
  175. Scott JA, Palmer SJ, Ingham J (1986b) Microbial metal adsorption enhancement by naturally excreted polysaccharide coatings. In: Eccles H, Hunt S (eds) Immobilization of ions by bio-sorption. Ellis Horwood, Chichester, UK, pp 81–88Google Scholar
  176. Scott JA, Sage GK, Palmer SJ, Powell DS (1986a) Cadmium adsorption by bacterial capsular polysaccharide coatings. Biotechnol Lett 8:711–714Google Scholar
  177. Silver S (1981) Mechanism of bacterial resistances to toxic heavy metals: arsenic, antimony, silver, cadmium and mercury. NBS Special Publ, pp 301–324Google Scholar
  178. Silverman MP, Ehrlich H (1964) Microbial formation and degradation of minerals. Adv Appl Microbiol 6:153–206Google Scholar
  179. Skyring GW (1981) Sulphate reduction in modern sediments and implications for ore formation. BMR J Aust Geol Geophys 6: 335Google Scholar
  180. Skyring GW, Bauld J (1990) Microbial mats in Australian coastal environments. Adv Microb Ecol 11:461–498Google Scholar
  181. Smiley DW, Wilkinson BJ (1983) Survey of taurine uptake and metabolism in Staphylococcus aureus. J Gen Microbiol 129:2421–2428Google Scholar
  182. Smith JJ, Geesey GG (1989) Detection and quantification of polymeric pyruvate in bacterial exopolymers and aquatic sediments. Abstr Am Soc Microbiol, New Orleans, pp 287Google Scholar
  183. Söhngen NL (1915) Einfluß von Kolloiden auf mikrobiologische Prozesse. Centralbl. f. Bakt. Abt. II Bd. 26:621–647Google Scholar
  184. Sterrit RM, Lester JN (1986) Heavy metal immobilization by bacterial extracellular polymers. In: Eccles H, Hunt S (eds) Immobilization of ions by bio-sorption. Ellis Horwood, Chichester, UK, pp 121–134Google Scholar
  185. Stotzky G (1980) Surface interactions between clay minerals and microbes, viruses and soluble organics, and the probable importance of these interactions to the ecology of microbes in soil. In: Berkeley RCW, Lynch JM, Rutter PR, Vincent B (eds) Microbial adhesion to surfaces. Ellis Horwood, Chichester, pp 231–247Google Scholar
  186. Strandberg GW, Shumate SE, Parrott JR (1981) Microbioal cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbiol 41:237–245Google Scholar
  187. Sutherland IW (1977) Microbial exopolysaccharide synthesis. In: Stanford PA, Laskin A (eds) Extracellular microbial polysaccharides. Am Chem Soc, Washington DC, pp 40–57Google Scholar
  188. Sutherland IW (1984) Microbial exopolysaecharides — their role in microbial adhesion in aqueous systems. CRC Crit Rev Microbiol 10:173–201Google Scholar
  189. Thayer JS, Brinckman FE (1982) Denitrification and removal of heavy metals from waste water by immobilized microorganisms. Appl Biochem Biotechnol 6:3–13Google Scholar
  190. Tomioka N, Uchiyama H, Yagi O (1992) Isolation and characterization of cesium-accumulating bacteria. Appl Environ Microbiol 58:1019–1023Google Scholar
  191. Tsezos M, Seto W (1986) The adsorption of chloroethanes by microbial biomass. Wat Res 20:851–858Google Scholar
  192. Turakhia MH, Cooksey KE, Characklis WG (1983) Influence of a calcium-specific chelant on biofilm removal. Appl Environ Microbiol 46:1236–1238Google Scholar
  193. Tyler PA, Marshall KC (1967) Microbial oxidation of manganese in hydroelectric pipelines. Antonie van Leuwenhoek 33:171–183Google Scholar
  194. Uhlinger DJ, White DC (1983) Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in P. atlantica. Appl Environ Microbiol 45:64–70Google Scholar
  195. Urey JC, Kricher JC, Boy Ian JM (1976) Bioconcentration of four pure PCB isomers by Chlorella pyrenoidosa. Bull Envir Contam Toxicol 16:81–85Google Scholar
  196. Vasse JM, Dazzo FB, Truchet GL (1984) Re-examination of capsule development and lectin-binding sites on Rhizobium japonicum 311 B 110 by the glutaraldehyde/ruthenium red/uranyl acetate staining method. J Gen Microbiol 130:3037–3047Google Scholar
  197. Walker SG, Flemming CA, Ferris FG, Beveridge TJ, Gailey GW (1989) Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Appl Environ Microbiol 55:2976–2984Google Scholar
  198. Weber WJ, McGinley PM, Katz LE (1991) Sorption phenomena in subsurfacesystems: concepts, models and effects on contaminant fate and transport. Wat Res 25:499–528Google Scholar
  199. Whitfield C (1988) Bacterial extracellular polysaccharides. Can J Microbiol 34:415–420Google Scholar
  200. Wiatr CL (1990) Controlling industrial slime. Eur Pat 0388 115 v. 12.3.90Google Scholar
  201. Williams FD, Schwarzhoff RH (1978) Nature of the swarming phenomenon in Proteus. Ann Rev Microbiol 32:101–122Google Scholar
  202. Zevenhuizen LPTM (1981) Cellular glycogen, β-1,2-glucan, poly-β-hydroxybutyric acid and extracellular polysaccharides in fast-growing species of Rhizobium. Ant v Leuwenhoek J Microbiol Serol 47:481–497Google Scholar
  203. Zuckerberg A, Diver A, Perri Z, Gutnick DL, Rosenberg E (1979) Emulsifier of Arthobacter RAG-1; chemical and physical properties. Appl Environ Microbiol 37:414–420Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • H.-C. Flemming
  • J. Schmitt
  • K. C. Marshall

There are no affiliations available

Personalised recommendations