Experimental Determinations of Meridional Distribution and Long Term Evolution of Tropospheric Ozone — Consequences on Radiative Forcing

  • Alain Marenco
  • I. Jonquières
  • H. Gouget
  • P. Nédélec
Part of the NATO ASI Series book series (volume 32)


The evaluation of the impact of tropospheric ozone on radiative forcing requires the knowledge of its distributions and trends in the atmosphere. The 2D cross-sections of O3 and precursors, obtained during large scale airborne campaigns (STRATOZ III and TROPOZ II), exhibit asymmetric distributions between the two hemispheres (higher values in the NH). The O3 series of Pic du Midi Observatory (3000 m altitude in SW France) show an exponential increase in tropospheric ozone of 1.6%/y, at northern mid-latitudes, since the beginning of the Century. A tentative evaluation of the radiative forcing by the different gases (CO2, O3, CH4, N2O, CFCs) confirms that ozone is currently the second most significant greenhouse gas (0.88 W/m2 and 0.36 W/m2 at mid-latitudes, in the northern and southern hemispheres respectively, between 1800 and 1990). The impact of greenhouse gases cannot be simulated by a simple CO2 doubling, but their individual characteristics need to be considered, especially the asymmetrical effect of ozone in both hemispheres.


Ozone Concentration Longwave Radiation Tropospheric Ozone Surface Ozone Meridional Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anfossi D., S. Sandroni and S. Viarenzo (1991) Tropospheric ozone in the nineteenth Century: the Moncalieri series, J. Geophys. Res., 96, 17.349–17.352Google Scholar
  2. Bojkov R., Surface ozone during the second half of the nineteenth Century (1986) J. Clim. Appl. Meteor., 25, 343–352CrossRefGoogle Scholar
  3. Bojkov R., Tropospheric ozone, its changes and possible radiative effects (1985) Technical Conference on Observation and Measurement of Atmospheric Contaminants, WMO special environmental report n° 16, (WMO/647), 94–127Google Scholar
  4. Bojkov R., Ozone changes at the surface and in the free troposphere (1988) in: Tropospheric ozone, LS. Isaksen Ed., 83–96Google Scholar
  5. Fishman J., V. Ramanathan, P.J. Crutzen and S.C. Liu (1979) Tropospheric ozone and climate, Nature, 282, 818–820CrossRefGoogle Scholar
  6. Hansen J., I. Fung, A. Lacis, D. Rind, S. Lebedeff, R. Ruedy and G. Russel (1988) Global climate changes as forecast by GISS’s 3-D model, J. Geophys. Res., 93, 9341–9364CrossRefGoogle Scholar
  7. Hauglustaine D., Modélisation de l’évolution de la composition chimique atmosphérique et du climat: approches uni et bi-dimensionnelles (1992) Thèse de doctorat en Sciences Physiques, University of Liège, Liège (BelgumGoogle Scholar
  8. Hauglustaine, D., C. Granier, G.P. Brasseur, and G. Mégie (1994) The importance of atmospheric chemistry in the calculation of radiative forcing on the climate system, J. Geophys. Res., 99, 1173–1186CrossRefGoogle Scholar
  9. IPCC, Climate Change: the IPCC Scientific Assessment, WMO/UNEP (1990) J. Houghton, G. Jenkins and J. Ephraums Eds., Cambridge University Press, Cambridge (UK)Google Scholar
  10. IPCC, The supplementary report to the IPCC Scientific Assessment, WMO/UNEP (1992) J. Houghton, B.A. Callander and S.K. Varneys Eds, Cambridge University Press, Cambridge (UK)Google Scholar
  11. Kley D., A. Volz and F. Mulheim (1988) Ozone measurements in historic perspective, in: Tropospheric ozone, I.S. Isaksen Ed., 63–72Google Scholar
  12. Lacis A., D. Wuebles and J. Logan, Radiative forcing of climate by changes in the vertical distribution of ozone (1990) J. Geophys. Res., 95, 9971–9981CrossRefGoogle Scholar
  13. Linvill D.E., W. Hooken and B. Olson (1980) Ozone in Michigan’s environment (1876–1880), Monthly Weath. Rev., 108, 1883–1891CrossRefGoogle Scholar
  14. Lissac I. and V. Grubisich (1991) An analysis of surface ozone data measured at the end of the 19 th Century in Zagreb, Yugoslavia, Atmos. Env., 25-A, 484–486Google Scholar
  15. Marenco A. and F. Said (1989-a) Meridional and vertical ozone distribution in the background troposphere (70°N-60°S; 0–12 km altitude) from scientific aircraft measurements during the Stratoz III experiment (June 1984), Atm. Env., 23, 301–214Google Scholar
  16. Marenco A., M. Macaigne and S. Prieur (1989-b) Meridional and vertical CO and CH4 distributions in the background troposphere (70°N-60°S; 0–12 km altitude) from scientific aircraft measurements during the Stratoz III experiment (June 1984), Atm. Env., 23, 185–200CrossRefGoogle Scholar
  17. Marenco A., H. Gouget, P. Nédélec and J.P. Pagès (1994) Evidence of a long term increase in tropospheric ozone from Pic du Midi data series — Consequences: Positive radiative forcing, J. Geophys. Res., 99, 16,617–16,632CrossRefGoogle Scholar
  18. Ramanathan V., L.B. Callis and R.E Boughner (1976) Sensitivity of surface temperature to perturbations in the stratospheric concentrations of ozone and nitrogen dioxide, J. Atmos. Sci., 33, 1092–1112CrossRefGoogle Scholar
  19. RAS (1993) Rapport de l’Académie des Sciences: Ozone et pollution oxydante dans la troposphère ( Essai d’évaluation scientifique ), Ed by Lavoisier (Paris)Google Scholar
  20. Rotty R.M. and G. Marland (1986) Production of CO2 from fossil fuel buming by fuel type, 1860–1982, Report NDP-006,Carbon Dioxide Information Center, Oak Ridge National Laboratory, USAGoogle Scholar
  21. Sandroni S., D. Anfossi and S. Viarenzo (1992) Surface ozone levels at the end of the nineteenth Century in South America, J. Geophys. Res., 97, 2535–2539Google Scholar
  22. Sandroni S. and D. Anfossi (1994) Historical data of surface ozone at tropical latitudes, Sci. Total Environ. (in press)Google Scholar
  23. Varotsos C. and C. Cartalis (1991) Re-evaluation of surface ozone over Athens, Greece, for the period 1901–1940, Atmos. Res., 26, 303–310CrossRefGoogle Scholar
  24. Wang W.C., J.P. Pinto and Y.L. Yung (1980) Climatic effects due to halogenated Compounds in the earth’s atmosphere, J. Atmos. Sci., 37, 333–338CrossRefGoogle Scholar
  25. Wang W.C., N.D. Sze and G. Molnar (1988) Ozone-climate interactions associated with increasing atmospheric trace gases, in: Tropospheric ozone, LS. Isaksen Ed., 147–159Google Scholar
  26. Wang W.C., G. Molnar, M.K. Ko, S. Goldenberg and N.D. Sze (1990) Atmospheric trace gases and global climate: a seasonal model study, Tellus, 42B, 149–161CrossRefGoogle Scholar
  27. Wang W.C., M.P. Dudek, X.Z. Liang and J.T. Kiehl (1991) Inadequacy of effective CO2 as a proxy in simulating the greenhouse effect of other radiatively active gases, Nature, 350, 573–577CrossRefGoogle Scholar
  28. Wang W.C., Y.C. Zhuang and R.D. Bojkov (1993) Climate implications of observed changes in ozone vertical distributions at middle and high latitudes of the northern hemisphere, Geophys. Res. Lett., 20, 1567–1571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Alain Marenco
    • 1
  • I. Jonquières
    • 1
  • H. Gouget
    • 1
  • P. Nédélec
    • 1
  1. 1.Laboratoire d’ Aérologie (CNRS — URA 0354)Université Paul SabatierToulouse CedexFrance

Personalised recommendations