Skip to main content

Evidence for Invertebrate Inflammatory Cytokines

  • Chapter
Invertebrate Immune Responses

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 24))

Abstract

Most invertebrates do not seem to be closely related to the vertebrates: In fact, some do not even appear to be animals with their plant-like appearances and sessile lifestyles. Yet, the more we learn about these distantly related ancestors, the more we realize how many vital systems we share. Parallels between mammalian and invertebrate cellular host defenses have been recognized for over a century (Metchnikoff 1968); but it is just in the past few years that molecular homologies have begun to be identified. A thorough understanding of ancient immune systems not only will help us to identify chinks in the armor of invertebrate pests, but will also provide a window to our own innate immune mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal B, Kohr W (1985) Human tumor necrosis factor. Methods Enzymol 116: 448–456

    Article  PubMed  CAS  Google Scholar 

  • Arai K, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T (1990) Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 59: 783–836

    Article  PubMed  CAS  Google Scholar 

  • Arend WP, Joslin FG, Thompson RC, Hannum CH (1990) An IL-1 inhibitor from human monocytes. J Immunol 143: 1851–1858

    Google Scholar 

  • Auron P, Webb A, Rosenwasser L, Mucci S, Rich A, Wolff S, Dinarello C (1984) Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci USA 81: 7907–7911

    Article  PubMed  CAS  Google Scholar 

  • Auron P, Rosenwasser L, Matsushima K, Copeland T, Dinarello C, Oppenheim J, Webb A (1985) Human and murine interleukin 1 possess sequence and structural similarities. J Mol Cell Immunol 2: 169–177

    PubMed  CAS  Google Scholar 

  • Beck G, Habicht G (1986) Isolation and characterization of a primitive IL-l-like protein from an invertebrate, Asterias forbesi. Proc Natl Acad Sci USA 83: 7429–7433

    Article  PubMed  CAS  Google Scholar 

  • Beck G, Habicht G (1991a) Primitive cytokines: harbingers of vertebrate defense. Immunol Today 12: 180–183

    Article  PubMed  CAS  Google Scholar 

  • Beck G, Habicht G (1991b) Purification and biochemical charaterization of an invertebrate interleukin 1. Mol Immunol 28: 577–584

    Article  PubMed  CAS  Google Scholar 

  • Beck G, Habicht G (1994) Invertebrate cytokines. In: Beck G, Cooper EL, Habicht GS, Marchalonis JJ (eds) Primordial immunity: foundations for the vertebrate immune system. The New York Academy of Sciences, New York, pp 206–212

    Google Scholar 

  • Beck G, Habicht G, Benach J, Miller F (1986) Interleukin 1: a common endogenous mediator of inflammation and the local Shwartzman reaction. J Immunol 136: 3025–3031

    PubMed  CAS  Google Scholar 

  • Beck G, Vasta G, Marchalonis J J, Habicht GS (1989a) Characterization of interleukin 1 activity in tunicates. Comp Biochem Physiol 92B: 93–98

    CAS  Google Scholar 

  • Beck G, O’Brian R, Habicht G (1989b) Invertebrate cytokines: the phylogenetic emergence on interleukin 1. BioEssays 11: 62–67

    Article  PubMed  CAS  Google Scholar 

  • Beck G, O’Brian RF, Habicht GS (1990) Characterization of interleukin 1 from invertebrates. In: Marchalonis JJ, Reinisch CL (eds) Defense molecules. Wiley, New York, pp 125–132

    Google Scholar 

  • Beck G, Habicht GS, Stillman DL, Cooper EL, Raftos DA (1993) Invertebrate cytokines III: interleukin 1-like molecules stimulate phagocytosis by tunicate and echinoderm cells. Cell Immunol 146: 284–299

    Article  PubMed  Google Scholar 

  • Binyon J (1972) Physiology of echinoderms. Pergamon Press, Oxford, pp 24–33

    Google Scholar 

  • Chain BM, Anderson RS (1983) Inflammation in insectes: the release of a plasmatocyte depletion factor following interaction between bacteria and haemocytes. J Insect Physiol 29: 1–4

    Article  Google Scholar 

  • Cherbas L (1973) The induction of an injury reaction in cultured haemocytes from saturniid pupae. J Insect Physiol 19: 2011–2023

    Article  CAS  Google Scholar 

  • Chizzonite R, Truitt T, Kilian P, Stern A, Nunes P, Parker K, Kafla K, Chua A, Lugg D, Gubler U (1989) Two high-affinity interleukin 1 receptors represent separate gene products. Proc Natl Acad Sci USA 86: 8029–8033

    Article  PubMed  CAS  Google Scholar 

  • Colotta F, Re F, Muzio M, Bertini R, Polentarutti N, Sironi M, Giri JG, Dower SK, Sims JE, Mantovani A (1993) Interleukin 1-type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 261: 472–475

    Article  PubMed  CAS  Google Scholar 

  • Cooper EL (1974) Invertebrate immunology. In: Cooper EL (ed) Contemporary topics in immunobiology, vol 4. Plenum Press, New York, pp 1–32

    Google Scholar 

  • Cooper E (1976) Comparative immunology. Prentice Hall, Englewood Cliffs, pp 40–59

    Google Scholar 

  • Cooper E, Roch P, Wright R (1982) Phylogeny of mononuclear cells. In: Mizuno D, Cohn Z, Takeya K, Ishida N (eds) Self-defense mechanisms: role of macrophages. Univ Tokyo Press, Tokyo, pp 3–14

    Google Scholar 

  • Dinarello C (1984) Interleukin 1. Rev Infect Dis 6: 51–95

    Article  PubMed  CAS  Google Scholar 

  • Dinarello C (1990) Interleukin 1 and its biologically related cytokines. In: Cohen S (ed) Lymphokines and the immune response. CRC Press, Boca Raton, pp 145–179

    Google Scholar 

  • Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141: 2407–2412

    PubMed  CAS  Google Scholar 

  • Endean R (1966) The coelomocytes and coelomic fluids. In: Boolootian R (ed) Physiology of echinodermata. Interscience, New York, pp 301–329

    Google Scholar 

  • Ermak TH (1975) An autoradiographic demonstration of blood cell renewal in Styela clava urochordata ascidiacea. Experientia 31: 837–839

    Article  Google Scholar 

  • Ermak TH (1982) The renewing cell populations of ascidians. Am Zool 22: 795–805

    Google Scholar 

  • Fransen L, Muller R, Marmenout A, Tavernier J, van der Heyden J, Kawashima E, Chollet A, Tizard R, van Heuverswyn H, van Vilet A, Ruysschaert M, Fiers W (1985) Molecular cloning of mouse tumor necrosis factor cDNA and its eukaryotic expression. Nucl Acids Res 13: 4417–4429

    Article  PubMed  CAS  Google Scholar 

  • Fryer SE, Hull CJ, Bayne CJ (1989) Phagocytosis of yeast by Biomphalaria glabrata: carbohydrate specificity of hemocyte receptors and a plasma opsonin. Dev Comp Immunol 13: 9–16

    Article  PubMed  CAS  Google Scholar 

  • Furutani Y, Notake M, Yamayoshi M, Yamagashi J, Nomura H, Ohue M, Furuta R, Fuzuki T, Yamada M, Nakamura S (1985) Cloning and characteristics of the cDNAs for human and rabbit interleukin la precursor. Nucl Acids Res 13: 5869–5882

    Article  PubMed  CAS  Google Scholar 

  • Gray P, Aggarwag B, Benton C, Bringman T, Henzel W, Jarrett J, Leung D, Moffat B, Ng P, Svedersky L, Palladino M, Nedwin G (1984) Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumor necrosis activity. Nature 312: 721–724

    Article  PubMed  CAS  Google Scholar 

  • Gray P, Glaister D, Chen E, Goeddel D, Pennica D (1986) Two interleukin 1 genes in the mouse: cloning and expression of the cDNA for murine interleukin lb. J Immunol 137: 3644–3648

    PubMed  CAS  Google Scholar 

  • Habicht GS, Beck G (1987) The role of interleukin 1 in increased vascular permeability in inflammation. In: Mo vat HZ (ed) Leukocyte emigration and its sequelae. Karger, Basel, pp 51–54

    Google Scholar 

  • Habicht G, Beck G, Benach J, Coleman J, Leichtling K (1985) Lyme disease spirochetes induce human and murine interleukin 1 production. J Immunol 134: 3147–3154

    PubMed  CAS  Google Scholar 

  • Hamby B, Huggins E, Lachman L, Dinarello C, Sigel M (1986) Fish lymphocytes respond to human IL-1. Lymphokine Res 5: 157–162

    PubMed  CAS  Google Scholar 

  • Haranaka K, Carswell E, Williamson B, Prendergast J, Satomi N, Old L (1986) Purification, characterization, and antitumor activity of nonrecombinant mouse tumor necrosis factor. Proc Natl Acad Sci USA 83: 3949–3953

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Kishimoto T (1989) Interleukin 6. In: Zembala M, Asherson G (eds) Human monocytes. Academic Press, London, pp 217–226

    Google Scholar 

  • Holers VM, Ruff TG, Parks DL, McDonald JA, Bakllard L, Brown EL (1989) Molecular cloning of a murine fibronectin receptor and its expression during inflammation. Expression of VLA-5 is increased in activated peritoneal macrophages in a manner discordant from major histocompatibility complex class II. J Exp Med 169: 1589–1605

    Article  PubMed  CAS  Google Scholar 

  • Hopp T, Dower S, March C (1986) The molecular forms of interleukin 1. Immunol Res 5: 271–280

    Article  PubMed  CAS  Google Scholar 

  • Hughes TK, Smith EM, Chin R, Cadet P, Sinisterra J, Leung MK, Shipp MA, Scharrer B, Stefano GB (1990) Immunoactive monokines (interleukin 1 and tumor necrosis factor) in the bivalve mollusc Mytilus edulus. Proc Natl Acad Sci USA 87: 4426–4429

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Yamamoto S, Kurado S, Sakamoto H, Kajihara J, Kiyota T, Hayashi H, Kato M, Seko M (1986a) Molecular cloning and expression in Escherichia coli of the cDNA coding for rabbit tumor necrosis factor. DNA 5: 149–156

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Shirai T, Yamamoto S, Akira M, Kawahara S, Todd C, Wallace R (1986b) Molecular cloning of the gene encoding rabbit tumor necrosis factor. DNA 5: 157–165

    Article  PubMed  CAS  Google Scholar 

  • Kelley M, Rosemiller M, Daulerio A, Newton R (1984) Development of an antibody specific for human interleukin 1. Lymphokine Res 3: 251

    Google Scholar 

  • Kishimoto T (1989) The biology of interleukin 6. Blood 74: 1–10

    PubMed  CAS  Google Scholar 

  • Klurtinger J, Kelly NM, Hancock RW (1989) Stimulation by fibronectin of macrophage mediated phagocytosis of Pseudomonas aeruginosa. Infect Immun 57: 817–822

    Google Scholar 

  • Kushner I (1982) The phenomenon of the acute phase response. Ann NY Acad Sci 389: 39–48

    Article  PubMed  CAS  Google Scholar 

  • Le J, Vilcek J (1989) Interleukin 6: a multifunctional cytokine regulating immune reactions and the acute phase protein response. Lab Invest 61: 588–602

    PubMed  CAS  Google Scholar 

  • LeClerc M, Brillouet C, Luquet G, Agogue P, Binaghi RA (1981) Properties of cell subpopula- tions of starfish axial organ: in vitro effect of pokeweed mitogen and evidence of lymphokine- like substances. Scan J Immunol 14: 281–284

    Article  CAS  Google Scholar 

  • Lima MF, Kierszenbaum F (1985) Lactoferrin effects on phagocytic cell function. I. Increased uptake and killing of an intracellular parasite by murine macrophages and human monocytes. J Immunol 134: 4176–4138

    PubMed  CAS  Google Scholar 

  • Lomedico P, Gubler U, Hellman C, Dukovich M, Giri J, Pan Y, Collier K, Seminow R, Chun A, Mizel S (1984) Cloning and expression of murine interleukin 1 cDNA in Escherichia coli. Nature 312: 458–462

    Article  PubMed  CAS  Google Scholar 

  • Maliszewki C, Baker P, Schoenborn M, Davis B, Cosman D, Gillis S, Cerretti D (1988) Cloning, sequence and expression of bovine interleukin la and interleukin 1b complementary DNAs. Mol Immunol 25: 429–437

    Article  Google Scholar 

  • March C, Mosley B, Larsen A, Cerretti D, Braedt G, Price V, Gillis S, Henney C, Kronheim S, Grabstein K, Colon P, Hopp T, Cosman D (1985) Cloning, sequence, and expression of two distinct human interleukin 1 complementary DNAs. Nature 315: 641–652

    Article  PubMed  CAS  Google Scholar 

  • Marchalonis J J, Schluter SF (1990) On the relevance of invertebrate recognition and defense mechanisms to the emergence of the immune response of vertebrates. Scand J Immunol 32: 13–20

    Article  PubMed  CAS  Google Scholar 

  • Metchnikoff E (1968) Lectures on the comparative pathology of inflammation. Dover, New York (English transl from French 1893 )

    Google Scholar 

  • Mizel S (1982) Interleukin 1 and T cell activation. Immunol Rev 63: 51–72

    Article  PubMed  CAS  Google Scholar 

  • Mohrig W, Schittek D (1979) Phagocytosis—stimulating mediators in insects. Acta Biol Med Germ 38: 953–958

    PubMed  CAS  Google Scholar 

  • Morrone G, Ciliberto G, Oliviero S, Arcone R, Dente L, Content J, Cortese R (1988) Recombinant interleukin 6 regulates the transcriptional activation of human acute phase genes. J Biol Chem 263: 12554–12558

    PubMed  CAS  Google Scholar 

  • Nathan C (1987) Secretory products of macrophages. J Clin Invest 79: 319–326

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim J, Kovaks E, Matsushima K, Durum S (1986) There is more than one interleukin 1. Immunol Today 7: 45–56

    Article  CAS  Google Scholar 

  • Ortenzi C, Miceli C, Bradshaw RA, Luporini P (1990) Identification and initial characterization of an autocrine pheromone receptor in the protozoan ciliate Euplotes raikovi. J Cell Biol 111: 607–614

    Article  PubMed  CAS  Google Scholar 

  • Pearsall NN, Weiser RS (1970) The macrophage. Lea and Febiger, Philadelphia

    Google Scholar 

  • Pennica D, Nedwin G, Hayflick J, Seeburg P, Derynck R, Palladino M, Kohr W, Aggarwal B, Goeddel D (1984) Human tumor necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312: 724–729

    Article  PubMed  CAS  Google Scholar 

  • Philip R, Epstein L (1986) Tumor necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induces by itself, gamma-interferon and interleukin 1. Nature 323: 86–89

    Article  PubMed  CAS  Google Scholar 

  • Prendergast R, Suzuki M (1970) Invertebrate protein simulating mediators of delayed hypersensitivity. Nature 227: 277–279

    Article  PubMed  CAS  Google Scholar 

  • Prendergast RA, Lutty GA, Scott AL (1983) Directed inflammation: the phylogeny of lymphokines. Dev Comp Immunol 7: 629–632

    Article  CAS  Google Scholar 

  • Raftos DA, Stillman DL, Cooper EL (1990) In vitro culture of tissue from the tunicate Styela clava. In Vitro 26: 962–970

    Google Scholar 

  • Raftos DA, Cooper EL, Habicht GS, Beck G (1991) Invertebrate cytokines: tunicate cell proliferation stimulated by an interleukin 1-like molecule. Proc Natl Acad Sci USA 88: 9518–9522

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe NA (1989) The biological significance of immunity. Dev Comp Immunol 13: 273–283

    Article  PubMed  CAS  Google Scholar 

  • Ratner S, Vinson SB (1983) Phagocytosis and encapsulation: cellular immune responses in arthropoda. Am Zool 23: 185–194

    Google Scholar 

  • Reichhart JM, Meister M, Dimarcq JL, Zachary D, Hoffmann D, Ruiz C, Richards G, Hoffmann JA (1992) Insect immunity: developmental and inducible activity of the Drosophila diptericin promotor. EMBO J 11: 1469–77

    PubMed  CAS  Google Scholar 

  • Reinisch CL, Litman GW (1989) Evolutionary immunobiology. Immunol Today 10: 278–281

    Article  PubMed  CAS  Google Scholar 

  • Schneider DS, Hudson KL, Lin TY, Anderson KV (1991) Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for the dorsal-ventral polarity in the Drosophila embryo. Genes Dev 5: 797–807

    Article  PubMed  CAS  Google Scholar 

  • Sigel M, Lichter W, McCumber L, Ghaffar A, Wellham L, Hightower J (1984) A substance from the marine tunicate Ecteinascidia turbinata with selective action on macrophages. In: Volkman A (ed) Mononuclear phagocyte biology. Marcel Dekker, New York, pp 451–471

    Google Scholar 

  • Smith R, Baglioni C (1987) The active form of tumor necrosis factor is a trimer. J Biol Chem, 262: 6951–6954

    PubMed  CAS  Google Scholar 

  • Sun S, Lindström I, Boman H, Faye I, Schmidt O (1990) Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily. Science 250: 1729–1732

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Mori K (1990) Hemolymph lectin of the pearl oyster, Pinctada fucata martensii: a possible non-self recognition system. Dev Comp Immunol 14: 161–173

    Article  PubMed  CAS  Google Scholar 

  • Tasch P (1973) Paleobiology of the invertebrates: data retrieval from the fossil record. Wiley, New York

    Google Scholar 

  • Vassalli P (1992) The pathophysiology of tumor necrosis factor. Annu Rev Immunol 10: 411–452

    Article  PubMed  CAS  Google Scholar 

  • Vasta G, Warr G, Marchalonis J (1982) Tunicate lectins: distribution and specificity. Comp Biochem Physiol 37B: 887–900

    Google Scholar 

  • Watkins D, Cohen N (1987) Mitogen-activated Xenopus leavis lymphocytes produce a T-cell growth factor. Immunology 62: 119–125

    PubMed  CAS  Google Scholar 

  • Wong G, Clark S (1988) Multiple actions of interleukin 6 within a cytokine network. Immunol Today 9: 137–139

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Taga T, Hirata Y, Yawata H, Kawanishi Y, Seed B, Taniguchi T, Hirano T, Kishimoto T (1988) Cloning and expression of the human interleukin 6 (BSF-2/IFN-beta2) receptor. Science 241: 825–828

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Habicht, G.S., Beck, G. (1996). Evidence for Invertebrate Inflammatory Cytokines. In: Cooper, E.L. (eds) Invertebrate Immune Responses. Advances in Comparative and Environmental Physiology, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79847-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79847-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79849-8

  • Online ISBN: 978-3-642-79847-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics