Advertisement

Nitrate or Ammonium Uptake and Transport, and Rapid Regulation of Nitrate Reduction in Higher Plants

  • Andreas D. Peuke
  • Werner M. Kaiser
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 57)

Abstract

Higher plants acquire nitrogen from the soil mainly in the form of nitrate and/or ammonium. The two N sources are taken up by the roots, where part of the nitorgen can be utilized directly or stored (mainly as nitrate). If nitrate or ammonium uptake exceed storage and utilization by roots, part of the inorganic nitrogen will be transported to the shoot, where it can be reduced and metabolized or stored as before. The first two sections of this chapter review physiological aspects of nitrate and ammonium uptake by the roots and their transport to the shoot. The third section focuses on the aspect of a rapid regulation of nitrate reduction in roots and shoots by environmental factors such as light, CO2, or oxygen availability.

Keywords

Nitrate Reduction Okadaic Acid Physiol Plant Nitrate Uptake Ammonium Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrell D, Oscarson P, Larsson C-M (1994) Physiol Plant 90: 467–474.CrossRefGoogle Scholar
  2. Agiiera E, de la Haba P, Fontes AG, Maldonado JM (1990) Planta 182: 149–154.Google Scholar
  3. Allen S, Raven JA (1987) J Exp Bot 37: 580–596.CrossRefGoogle Scholar
  4. Allen S, Smith JAC (1986) J Exp Bot 37: 1599–1610.CrossRefGoogle Scholar
  5. Allen S, Raven JA, Sprent JI (1988) J Exp Bot 39: 513–528.CrossRefGoogle Scholar
  6. Andrews M (1986) Plant Cell Environ 9: 511–519.Google Scholar
  7. Andrews M, Morton JD, Lieffering M, Bisset L (1992) Ann Bot 70: 271–276.Google Scholar
  8. Arnozis PA, Findenegg GR (1986) J Plant Physiol 125: 441–449.Google Scholar
  9. Aslam M, Travis RL, Huffaker RC (1992) Plant Physiol 99: 1124–1133.PubMedCrossRefGoogle Scholar
  10. Aslam M, Travis RL, Huffaker RC (1993) Plant Physiol 102: 811–819.PubMedGoogle Scholar
  11. Aslam M, Travis RL, Huffaker RC (1994) Plant Physiol 106: 1293–1301.PubMedGoogle Scholar
  12. Atkins CA, Pate JS, Layzell DB (1979) Plant Physiol 64: 1078–1082.PubMedCrossRefGoogle Scholar
  13. Atkins CA, Pate JS, Griffiths GJ, White ST (1980) Plant Physiol 66: 978–983.PubMedCrossRefGoogle Scholar
  14. Ayling SM (1993) Plant Cell Environ 16: 297–303.CrossRefGoogle Scholar
  15. Bachmann M, Michael RW, Huber JL, Kaiser WM, Huber SC (1995) Plant Physiol, in press.Google Scholar
  16. Baur B, Dietz KJ, Winter K (1992) Eur J Biochem 209: 95–101.PubMedCrossRefGoogle Scholar
  17. Beevers L, Hageman RH (1983) In: Lauchli IA et al. (eds) Encycl of plant physiol. Springer, Berlin Heidelberg New York, 15A: 351–376.Google Scholar
  18. Behl R, Tischner R, Raschke K (1988) Planta 176: 235–240.CrossRefGoogle Scholar
  19. Bell TL, Pate JS, Dixon KW (1994) J Exp Box 45: 779–790.CrossRefGoogle Scholar
  20. Blevins DG, Barnett NM, Frost WB (1978) Plant Physiol 62: 784–788.PubMedCrossRefGoogle Scholar
  21. Bloom AJ, Sukrapanna SS, Warner RL (1992) Plant Physiol 99: 1294–1301.PubMedCrossRefGoogle Scholar
  22. Botella MA, Cerda A, Lips SH (1994) J Plant Physiol 144: 53–57.Google Scholar
  23. Bowman DC, Paul JL (1988) Plant Physiol 88: 1303–1309.PubMedCrossRefGoogle Scholar
  24. Casadesus J, Tapia L, Lambers H (1995) Physiol Plant 93: 279–285.CrossRefGoogle Scholar
  25. Clarkson DT (1986) In: Lambers H et al. (eds) Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants. Martinus Nijhoff Publ, Dordrecht, pp 3–27.Google Scholar
  26. Clarkson DT, Liittge U (1991) Prog Bot 52: 61–83.Google Scholar
  27. Cooper HD, Clarkson DT (1989) J Exp Bot 40: 753–762.CrossRefGoogle Scholar
  28. Cramer MD, Lewis OAM (1993) Ann Bot 72: 37–46.CrossRefGoogle Scholar
  29. Criddle RS, Ward MR, Huffaker RC (1988) Plant Physiol 86: 166–175.PubMedCrossRefGoogle Scholar
  30. De Cires A, De la Torre A, Delgado B, Lara C (1993) Planta 190: 277–283.CrossRefGoogle Scholar
  31. Deignan MT, Lewis OAM (1988) New Phytol 100: 1–3.CrossRefGoogle Scholar
  32. Devienne F, Mary B, Lamaze T (1994) J Exp Bot 45: 667–676.CrossRefGoogle Scholar
  33. Doddema H, Telkamp GP (1979) Physiol Plant 45: 332–338.CrossRefGoogle Scholar
  34. Duarte PJP, Larsson C-M (1993) J Plant Physiol 141: 182–187.Google Scholar
  35. Epstein E (1972) Mineral nutrition of plants. Principles and perspectives. Wiley, New York.Google Scholar
  36. Fentem PA, Lea PJ Stewart GR (1983) Plant Physiol 71: 496–501.PubMedCrossRefGoogle Scholar
  37. Forster JC, Jeschke WD (1993) J Plant Physiol 141: 322–328.Google Scholar
  38. Gastal F, Saugier B (1989) Plant Cell Environ 12: 407–418.CrossRefGoogle Scholar
  39. Gerhardt R, Stitt M, Heldt HW (1987) Plant Physiol 83: 399–407.PubMedCrossRefGoogle Scholar
  40. Glaab J, Kaiser WM (1993) Planta 191: 173–179.CrossRefGoogle Scholar
  41. Glaab J, Kaiser WM (1995) Planta 195: 514–518.CrossRefGoogle Scholar
  42. Glass ADM, Shaff JE, Kochian LV (1992) Plant Physiol 99: 456–463.PubMedCrossRefGoogle Scholar
  43. Glass ADM, Siddiqi MY, Ruth TJ, Rufty WT Jr (1990) Plant Physiol 93: 1585–1589.PubMedCrossRefGoogle Scholar
  44. Gojon A, Soussana J-F, Passama L, Robin P (1986) Plant Physiol 82: 254–260.PubMedCrossRefGoogle Scholar
  45. Gojon A, Bussi C, Grignon C, Salsac L (1991) Physiol Plant 82: 505–512.CrossRefGoogle Scholar
  46. Gouia H, Ghorbal MH, Touraine B (1994) Plant Physiol 105: 1409–1418.PubMedGoogle Scholar
  47. Goyal SS, Huffaker RC (1986) Plant Physiol 82: 1051–1056.PubMedCrossRefGoogle Scholar
  48. Haynes RJ, Goh KM (1978) Biol Rev 53: 465–510.CrossRefGoogle Scholar
  49. Hole DJ, Emran AM, Fares Y, Drew MC (1990) Plant Physiol 93: 642–647.PubMedCrossRefGoogle Scholar
  50. Huber JL, Huber SC, Campbell WH, Redinbaugh MG (1992) Arch Biochem Biophys 296: 58–65.PubMedCrossRefGoogle Scholar
  51. Huber JL, Huber SC, Michael RW Jr, Redinbaugh MG, Campbell WH (1993) Curr Top Plant Biochem Physiol 12: 7–8.Google Scholar
  52. Huber JL, Redinbaugh MG, Huber SC, Campbell WH (1994) Plant Physiol 106: 1667–1674.PubMedGoogle Scholar
  53. Huber SC, Huber JL, Campbel WH, Redinbaugh MG (1992a). Plant Physiol 100: 706–712.PubMedCrossRefGoogle Scholar
  54. Huber SC, Huber JL, Campbell WH, Redinbaugh MG (1992b) Plant Cell Physiol 33: 639–646.Google Scholar
  55. Huber SC, Michael RW, Huber JL, Redinbaugh MG, Campbell WM (1993) Curr Top Plant Biochem Physiol 12: 9–10.Google Scholar
  56. Imsande J, Touraine B (1994) Plant Physiol 105: 3–7PubMedGoogle Scholar
  57. Jackson WA, Volk RJ (1992) New Phytol 122: 439–446.CrossRefGoogle Scholar
  58. Jackson WA, Pan WL, Moll RH, Kamprath EJ (1986) In: Neyra CA (ed) Biochemistry basis of plant breeding. Vol II Nitrogen metabolism. CRC Press, Boca Raton, pp 73–107.Google Scholar
  59. Jeschke WD, Atkins CA, Pate JS (1985) J Plant Physiol 117: 319–330.Google Scholar
  60. Jeschke WD, Pate JS (1991a) J Plant Physiol 137: 488–498.Google Scholar
  61. Jeschke WD, Pate JS (1991b) J Exp Bot 42: 1091–1103.CrossRefGoogle Scholar
  62. Jeschke WD, Pate JS (1992) J Exp Bot 43: 393–402.CrossRefGoogle Scholar
  63. Jeschke WD, Wolf O, Hartung W (1992) J Exp Bot 43: 777–788.CrossRefGoogle Scholar
  64. Kaiser WM, Brendle-Behnisch E (1991) Plant Physiol 96: 363–367.PubMedCrossRefGoogle Scholar
  65. Kaiser WM, Brendle-Behnisch E (1995) Planta 196: 1–6.CrossRefGoogle Scholar
  66. Kaiser WM, Forster J (1989) Plant Physiol 91: 970–974.PubMedCrossRefGoogle Scholar
  67. Kaiser WM, Huber SC (1994a) Planta 193: 358–365.CrossRefGoogle Scholar
  68. Kaiser WM, Huber SC (1994b). Plant Physiol 106: 817–821.PubMedGoogle Scholar
  69. Kaiser WM, Spill D (1991) Plant Physiol 96: 368–375.PubMedCrossRefGoogle Scholar
  70. Kaiser WM, Spill D, Brendle-Behnisch E (1992) Planta 186: 236–240.CrossRefGoogle Scholar
  71. Kaiser WM, Spill D, Glaab J (1993) Physiol Plant 89: 557–562.CrossRefGoogle Scholar
  72. King BJ, Siddiqi MY, Ruth TJ, Warner RL, Glass ADM (1993) Plant Physiol 102: 1279–1286.PubMedGoogle Scholar
  73. King BJ, Siddiqi MY, Glass ADM (1992) Plant Physiol 99: 1582–1589.PubMedCrossRefGoogle Scholar
  74. Kleiner D (1981) Biochim Biophys Acta 639: 41–52.PubMedGoogle Scholar
  75. Kojima M, Wu SJ, Fukui H, Sugimoto T, Nanmori T, Oji Y (1995) Physiol Plant 93: 139–145.CrossRefGoogle Scholar
  76. Lrie ST, Crawford NM (1994) J Biol Chem 269: 14497–14501.Google Scholar
  77. Laine P, Bigot J, Ourry A, Boucaud J (1994) New Phytol 127: 675–683.CrossRefGoogle Scholar
  78. Lambers H, Simpson RJ, Beilharz VC, Dalling MJ (1982) Physiol Plant 56: 421–429.CrossRefGoogle Scholar
  79. Lang B, Kaiser WM (1994) New Phytol 128: 451–459.CrossRefGoogle Scholar
  80. Larsson C-M, Larsson M, Purves JV, Clarkson DT (1991) Physiol Plant 82: 345–352.CrossRefGoogle Scholar
  81. Lee RB (1978) J Exp Botany 29: 693–708.CrossRefGoogle Scholar
  82. Lee RB, Drew MC (1986) J Exp Bot 37: 1768–1779.CrossRefGoogle Scholar
  83. Lee RB, Drew MC (1989) J Exp Bot 40: 741–752.CrossRefGoogle Scholar
  84. Lee RB, Rudge KA (1986) Ann Bot 57: 471–486.Google Scholar
  85. Lee RB, Ratcliffe RG (1991) Planta 183: 359–367.CrossRefGoogle Scholar
  86. Lewis OAM, James DM, Hewitt EJ (1982) Ann Bot 49: 39–49.Google Scholar
  87. Li XZ, Oaks A (1993) Plant Physiol 102: 1251–1257.PubMedGoogle Scholar
  88. Lillo C (1994) Physiol Plant 91: 295–299.CrossRefGoogle Scholar
  89. Macduff JH, Jackson SB (1991) J Exp Bot 42: 521–530.CrossRefGoogle Scholar
  90. Mack G, Tischner R (1990) Planta 182: 169–173.CrossRefGoogle Scholar
  91. Mack G, Tischner R (1994) J Plant Physiol 144: 351–357.Google Scholar
  92. Maintosh C (1992) Biochim Biophys Acta 1137: 121–126.CrossRefGoogle Scholar
  93. Maintosh RW, Maintosh C (1993) In: Battery NH, Dickinson HG, Hetherington AM (eds) Society for Experimental Boilogy Seminar Series 53. Cambridge University Press, pp 197–212.Google Scholar
  94. Maintosh C, Douglas P, Lillo C (1995) Plant Physiol 107: 451–458.Google Scholar
  95. Macklon AES, Ron MM, Sim A (1990) J Exp Bot 41: 359–370.CrossRefGoogle Scholar
  96. Mlure PR, Kochian LV, Spanswick RM, Shaff JE (1990) Plant Physiol 93: 281–289.CrossRefGoogle Scholar
  97. Muller B, Touraine B (1992) J Exp Bot 43: 617–623.CrossRefGoogle Scholar
  98. Murphy AT, Lewis OAM (1987) New Phytol 107: 327–333.CrossRefGoogle Scholar
  99. Neyra CA, Hageman RH (1975) Plant Physiol 56: 692–695.PubMedCrossRefGoogle Scholar
  100. Nissen P (1974) Annu Rev Plant Physiol 25: 53–79.CrossRefGoogle Scholar
  101. Pate JS (1973) Soil Biol Biochem 5: 109–119.CrossRefGoogle Scholar
  102. Pate JS, Layzell DB, Meil DL (1979a) Plant Physiol 63: 730–737.PubMedCrossRefGoogle Scholar
  103. Pate JS, Layzell DB, Atkins CA (1979b) Plant Physiol 64: 1083–1088.PubMedCrossRefGoogle Scholar
  104. Pate JS, Atkins CA, Layzell DB, Shelp BJ (1984) Plant Physiol 76: 59–64.PubMedCrossRefGoogle Scholar
  105. Peuke AD, Glaab J, Kaiser WM, Jeschke W (1996) J Exp Bot (in press).Google Scholar
  106. Peuke AD, Jeschke WD (1993) J Exp Bot 44: 1167–1176.CrossRefGoogle Scholar
  107. Peuke AD, Jeske WD (1995) In: Baluska et al. (eds) Structure and Function of Roots. Kluwer Academic Publ., Dordrecht, pp 229–236.Google Scholar
  108. Peuke AD, Tischner R (1991) J Exp Bot 42: 723–628.CrossRefGoogle Scholar
  109. Peuke AD, Hartung W, Jeschke WD (1994) J Exp Bot 45: 733–740.CrossRefGoogle Scholar
  110. Putnam-Evans CI, Harmon AC, Cormier MJ (1990) Biochemistry 29: 2488–2499.PubMedCrossRefGoogle Scholar
  111. Rao KP, Rains DW (1976) Plant Physiol 57:55–58.PubMedCrossRefGoogle Scholar
  112. Redinbaugh MG, Campbell WH (1992) Physiol Plant 82: 640–650.CrossRefGoogle Scholar
  113. Ricard B, Couee I, Raymond P, Sanglio PH, Saint-Ges V, Pradet A (1994) Plant Physiol Biochem 32: 1–10.Google Scholar
  114. Rideout JW, Chaillou S, Raper CD Jr, Morot-Gaudry J-F (1994) J Exp Bot 45: 23–33.PubMedCrossRefGoogle Scholar
  115. Riens B, Heldt HW (1992) Plant Physiol 98: 573–577.PubMedCrossRefGoogle Scholar
  116. Roberts JKM, Pang MKL (1992) Plant Physiol 100: 1571–1574.PubMedCrossRefGoogle Scholar
  117. Rufty TW Jr, Jackson WA, Raper CD Jr (1981) Plant Physiol 68: 605–609.PubMedCrossRefGoogle Scholar
  118. Rufty TW Jr, Maown CT, Volk RJ (1990) Physiol Plant 79: 85–95.CrossRefGoogle Scholar
  119. Runge M (1983) In: Lange OL et al. (eds) Enc Plant Physiol. Springer. Berlin Heidelberg New York, 12C: 163–200.Google Scholar
  120. Saint-Ges V, Roby C, Bligny R, Pradet A, Douce R (1991) Eur J Biochem 200: 477–482.PubMedCrossRefGoogle Scholar
  121. Scherer HW, Maown CT, Leggett JE (1984) J Exp Bot 35: 1060–1070.CrossRefGoogle Scholar
  122. Schjoer-ring JK, Kyllingsbaek A, Mortensen JV, Byskov-Nielsen S (1993) Plant Cell Environ 16: 161–167.CrossRefGoogle Scholar
  123. Schobert C, Komor E (1992) J Plant Physiol 140: 306–309.Google Scholar
  124. Schröppel- Meier G, Kaiser WM (1988) Plant Physiol 87: 822–827.PubMedCrossRefGoogle Scholar
  125. Siddiqi MY, Glass ADM, Ruth TJ, Rufty WT Jr (1990) Plant Physiol 93: 1426–1432.PubMedCrossRefGoogle Scholar
  126. Simpson RJ, Lambers H, Dalling MJ (1982) Physiol Plant 56: 11–17.CrossRefGoogle Scholar
  127. Siddiqi MY, Glass ADM, Ruth TJ (1991) J Exp Bot 42: 1455–1463.CrossRefGoogle Scholar
  128. Siddiqi MY, Glass ADM, Ruth TJ, Fernando M (1989) Plant Physiol 90: 806–827.PubMedCrossRefGoogle Scholar
  129. Skerrett M, Tyerman SD (1994) Planta 192: 183–188.CrossRefGoogle Scholar
  130. Sutherland JM, Andrews M, Mclnroy S, Sprent JI (1985) Ann Bot 56: 295–305.Google Scholar
  131. Smirnoff N, Todd P, Stewart GR (1984) Ann Bot 54: 363–374.Google Scholar
  132. Solomonson LP, Barber MJ (1990) Plant Mol Biol 41: 187–223.CrossRefGoogle Scholar
  133. Spill D, Kaiser WM (1994) Planta 192: 183–188.CrossRefGoogle Scholar
  134. Sutherland JM, Andrews M, Mclnroy S, Sprent JI (1985) Ann Bot 56: 259–263.Google Scholar
  135. Tanner W, Beevers H (1990) Plant Cell Environ 13: 745–750.CrossRefGoogle Scholar
  136. Tischner R (1994) Nova Acta Leopoldina NF 70: 29–38.Google Scholar
  137. Touraine B, Muller B, Grignon C (1992) Plant Physiol 99: 1118–1123.PubMedCrossRefGoogle Scholar
  138. Ullrich WR (1987) In: Ullrich WR (eds) Inorganic nitrogen metabolism. Springer, Berlin Heidelberg New York, pp 32–38.CrossRefGoogle Scholar
  139. Ullrich WR, Novacky A (1981) Plant Sci (Lett) 22: 211–217.CrossRefGoogle Scholar
  140. Ullrich WR, Larsson M, Larsson C-M, Lesch S, Novacky A (1984) Physiol Plant 61: 369–376.CrossRefGoogle Scholar
  141. Vale FR, Volk RJ, Jackson WA (1988) Planta 173: 424–431.CrossRefGoogle Scholar
  142. van Beusichem ML, Kirkby EA, Baas R (1988) Plant Physiol 86: 914–921.PubMedCrossRefGoogle Scholar
  143. Vezina L-P, Lavoie N, Joy KW, Margolis HA (1992) J Plant Physiol 141: 61–67.Google Scholar
  144. Wallace W (1974) Biochim Biophys Acta 341: 265–276.PubMedGoogle Scholar
  145. Wang MY, Siddiqi MY, Ruth TJ, Glass ADM (1993a) Plant Physiol 103: 1249–1258.PubMedCrossRefGoogle Scholar
  146. Wang MY, Siddiqi MY, Ruth TJ, Glass ADM (1993b) Plant Physiol 103: 1259–1267.PubMedCrossRefGoogle Scholar
  147. Wollenweber B, Raven JA (1993) Bot Acta 106: 42–51.Google Scholar
  148. Wong YS, Michael RW, Lagarias LC (1989) Plant Physiol 91: 709–718.PubMedCrossRefGoogle Scholar
  149. Yoshimura T, Sekino N, Okuo K, Sato T, Ogura N, Nakagawa H (1992) Plant Cell Physiol 33(4): 363–369.Google Scholar
  150. Zhen R-G, Smith SJ, Miller AJ (1992) J Exp Bot 43: 131–138.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Andreas D. Peuke
    • 1
  • Werner M. Kaiser
    • 1
  1. 1.Julius-von-Sachs-Institut für Biowissenschaften mit Botanischem Garten, Lehrstuhl Botanik IUniversität WürzburgWürzburgGermany

Personalised recommendations