How Accurately do we know the Marine Geoid in Shallow Water Regions?

  • M. Metzner
  • S. Dick
  • E. W. Grafarend
  • M. Stawarz
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 114)


Radar altimeter (RA) data of the three day orbit and the first three successive cyles of the 35 day repeat orbit of the first European Remote Sensing Satellite (ERS-1) are analysed with an iterative collinear method. The investigation areas are the North Sea, the Baltic Sea and the Indonesian waters. The collinear method is based on the comparison of environmentally corrected RA-data with simulated corresponding water levels of regionally adapted circulation models along individual subsatellite passes. Since the geoid is space rather than time depending, systematic height differences between simulated water levels and altimetric sea surface heights from multiple repeats at nearly the same geographical position are related to uncertainties of the local geoid. The resulting geoid corrections for shallow water regions, e.g. water depth ≤ 200 m, relative to the GRIM4-C2 geoid model of the German Processing and Archiving Facility (D-PAF) is ± 1–2 m. However, over steep slopes of the sea bottom topography the geoid corrections exceed even ± 16 m, e.g. in the sea area of the Sunda trench. The comparison of the recalculated geoid heights with those of the gravity model of the Ohio State University (OSU91 A) shows good agreement. However, there are still geoid differences of ±2 m with local differences of ±6 m for the Indonesian waters which will be investigated further.


Geoid Height Geoid Undulation Tide Gauge Data Radar Altimeter Shallow Water Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Admiralty Tide Tables and Tidal Stream Tables (1992). Pacific Ocean and seas, Vol. 3, published by the Hydrographer of the Navy, Crown Copyright, 483 pp.Google Scholar
  2. Backhaus, J.O. (1980). Simulation von Bewegungsvorgängen in der Deutschen Bucht, Deutsche Hydrographische Zeitschrift, Ergänzungsheft Reihe B, Nr. 15, 56 pp.Google Scholar
  3. Backhaus, J.O., and E. Maier-Reimer (1983). On seasonal circulation patterns in the North Sea, in: North Sea Dynamics, Ed. by J. Sündermann and W. Lenz, Springer-Verlag Berlin Heidelberg, 63–84.Google Scholar
  4. Bosch, W., and Gruber, Th. (1991). Altimetry based geoid determination at the German Processing and Archiving Facility within the ERS-1 project, in: Determination of the Geoid - Present and Future, International Association of Geodesy Symposia, No. 106, Ed.: R. H. Rapp and F. Sans’o, Springer- Verlag, 75–85.Google Scholar
  5. Cheney, R.E., Douglas, B.C., Agreen, R.W., Porter, D.L., and Doyle, N.S. (1987) GEOSAT altimeter geophysical data record user handbook, NOAA Technical Memorandum, NOS NGS 46, 28 pp.Google Scholar
  6. Dick, S., and Soetje, K. Ch. (1990). Ein operationelles Ölausbreitungsmodell für die Deutsche Bucht, Deutsche Hydrographische Zeitschrift, Ergänzungsheft Reihe A, Nr. 16, 43 pp.Google Scholar
  7. Gill, A. E. (1982). Atmosphere-Ocean Dynamics, International Geophysics Series, Vol. 30, Academic Press., 662 pp.Google Scholar
  8. Glazman, R.E., Greysukh, A., and Zlotnicki, V. (1994). Evaluating models of sea state bias in satellite altimetry, J. Geophys. Res, 99(C6), 12,581–12, 591.Google Scholar
  9. IFREMER/CERSAT (1994). Altimeter products user manual, C1-EX-MUT-A21-01-CN, issue 2, revision 6, 40 pp.Google Scholar
  10. Kleine, E. (1994). Das operationelle Modell des BSH für Nordsee und Ostsee -Konzeption und Ubersicht, (unpublished manuscript), Bundesamt für Seeschiff- fahrt und Hydrographie ( BSH ), Hamburg, November 1994, 126 pp.Google Scholar
  11. Marsh, J.G., Koblinsky C.J., Lerch, F.J., Klosko, S.M., and Robbins, J.W. (1988). A new gravitational model for the earth from satellite tracking data: GEM-T1, J. Geophys. Res, 93 (B6), 6169–6215.CrossRefGoogle Scholar
  12. Marsh, J.G. et al. (1990). The GEM-T2 gravitational model, J. Geophys. Res, 95(B13), 22,043-22, 071.CrossRefGoogle Scholar
  13. Metzner, M., Grafarend, E. W., and Dick, S. (1994). The suitability of ERS-1 radar-altimeter data for oceanographic and geodetic applications for the Baltic Sea, Proceedings of the Second ERS-1 Symposium, Hamburg, Germany, ESA SP-361, Vol. 1, 591–596.Google Scholar
  14. Mihardja, D. K. (1991). Energy and momentum budget of the tides in Indonesian waters, Berichte aus dem Zentrum für Meeres- und Klimaforschung der Universität Hamburg, No. 14, 183 pp.Google Scholar
  15. Müller-Navara, S., and Mittelstaedt, E. (1987). Schadstoffausbreitung und Schad-stoffbelastung in der Nordsee - Eine Modellstudie, Deutsche Hydrographische Zeitschrift, Ergängzungsheft Reihe B, Nr. 18, 51 pp.Google Scholar
  16. Rapp, R.H. (1993). Geoid undulation accuracy, IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, No. 2, 365–370.CrossRefGoogle Scholar
  17. Rapp, R.H., Wang, Y.M., and Pavlis, N.K. (1991). The Ohio State 1991 geopotential and sea surface topography harmonic coefficient model, The Ohio State University Report, No. 410, Department of Geodetic Science and Surveying, 94 pp.Google Scholar
  18. Schwintzer, P.; Reigber, C.; Barth, W.; Massmann, F.-H., Raimondo; J.C., Gerste, M.; Bode, A.; Li, H.; Biancale, R.; Balmino, G.; Moynod, B.; Lemoine, J. M.; Marty, J.C.; Barlier, F., and Boudon, Y. (1992). GRIM4 - Globale Erdschwerefeldmodelle, Zeitschrift für Vermessungswesen, Nr. 117, 227–247.Google Scholar
  19. Soetje, K.C., and Brockmann, Ch. (1983). An operational numerical model of the North Sea and the German Bight, in: North Sea Dynamics, Ed.: J. Sündermann and W. Lenz, Springer-Verlag Berlin Heidelberg, 95–107.CrossRefGoogle Scholar
  20. Stawarz, M. (1994). Bestimmung von Geoidkorrekturen der südostasiatischen Gewässer aus simulierten und altimetrischen Meeresoberflächenhöhen, Diploma thesis, Universität Hamburg, Fachbereich Geowissenschaften, 104 pp.Google Scholar
  21. Stawarz, M., and Metzner, M. (1994). Altimetric geoid of the Indonesian waters derived from ERS-1 radar altimeter data, to be published in the Proceedings of the INSMAP′94, 19–23 September 1994, Hannover, Germany, 12 pp.Google Scholar
  22. UNESCO (1981). Tenth report on the joint panel on oceanographic tables and standards, Technical papers in marine science, No. 36, 24 pp.Google Scholar
  23. Wieser, M. (1987). Das globale digitale Höhenmodell TUG87, Interner Bericht des Instituts für Theoretische Geodäsie, Abteilung für Mathematische und Daten-verarbeitende Geodäsie der Technischen Universität Graz, Osterreich, 4 pp.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. Metzner
    • 1
  • S. Dick
    • 2
  • E. W. Grafarend
    • 1
  • M. Stawarz
    • 3
  1. 1.Geodätisches InstitutUniversität StuttgartStuttgartGermany
  2. 2.Bundesamt für Seeschiffahrt und Hydrographie (BSH)Germany
  3. 3.GKSS Forschungszentrum Geesthacht GmbHGeesthachtGermany

Personalised recommendations