Skip to main content

Exokrine und endokrine Funktionen des Magens

  • Conference paper
Book cover Molekularbiologische Grundlagen der Gastroenterologie

Zusammenfassung

Interleukin (Il)-1β ist der potenteste der bislang beschriebenen physiologischen und pharmakologischen Inhibitoren der Magensäuresekretion der Ratte. Diese Feststellung gilt unabhängig davon, ob die Injektion des Zytokins intra-zerebroventrikulär, -hypothalamisch bzw. -zisternal (0, 01–100 ng) oder intravenös bzw. -peritoneal (0, 1–5, 0 μg) erfolgt. Die niedrigere Potenz von peripher appliziertem Il-1β ist wahrscheinlich durch die überwiegend zentrale Wirkung des über die Blut-Hirn-Schranke transportierten Zytokins bedingt. Periphere Effekte scheinen weniger bedeutsam zu sein. Der säurehemmende zentrale Il-1β Effekt ist lang anhaltend (bis zu 8 h) und wird durch Il-1 Rezeptorantagonisten blockiert. Il-1β interagiert mit spezifischen Rezeptoren in definierten hypothalamischen Kerngebieten und im Hirnstamm, durch die der säurehemmende Effekt induziert wird. Anschließend wird er über nachgeordnete zentrale und periphere PGE2-abhängige Mechanismen vermittelt. Hierbei spielen Somatostatin, Corticotropin releasing factor und adrenerge Mechanismen keine Rolle. Nach zentraler wie nach peripherer Applikation ist I;-1α deutlich weniger effektiv als Il-1β, während Il-4, Il-6 und Tumor Nekrosefaktor α zentral und peripher keinen Effekt auf die Säureskretion in vivo haben. Die Säureproduktion in vitro (isolierte Drüsenschläuche, Parietalzellen) wird durch Il-1α, Il-1β und TNFα nicht beeimiußt. Bei Ratten steigert intrazisternales Il-1β die Serumgastrinspiegel, intraperitoneales TNFα die Peptid-YY-Freisetzung ins portalvenöse Blut, Il-1α die von Gastrin. Diese In-vivo-Effekte auf Gastrin könnten gegenregulatorisch durch die Säurehemmung bedingt sein. Dagegen stellt die Stimulation der Gastrinsekretion von Primärkulturen antraler G-Zellen des Kaninchens wahrscheinlich einen direkten Effekt von Il-1β und TNF-α (0, 01–10 ng/ml) auf diesen Zelltyp dar. Die Säurehemmung durch zentral wirkendes Il-1β ist physiologisch wahrscheinlich nicht relevant. Gastroprotektive Effekte von zentralem Il-1β weisen jedoch auf eine mögliche pathophysiologische Relevanz z.B. bei septischen Zuständen oder Streβ hin. Hier könnte die zentralnervöse Freisetzung von Il-1β durch Hemmung der Säuresekretion blutende Magenschleimhautläsionen verhindern.

Summary

Interleukin (Il)-1β is more potent than any other known physiological or pharmacological inhibitor of gastric acid secretion in the rat. This holds for intracerebroventricular, -hypothalamic or -cisternal (0.01–100 ng) as well as for intravenous or -peritoneal (0.1–5.0μg) application of the cytokine. The lower potency of peripherally administered Il-1β is probably due to the mainly central mode of action of the cytokine after being transported across the blood-brain barrier. Peripheral effects appear to be of minor importance. The antisecretory effect of central Il-1β lasts for up to 8 hours and is blocked by Il-1 receptor antagonists. Il-1β interacts with specific receptors in defined areas in the hypothalamus, brainstem and medulla to induce inhibition of gastric acid secretion. Consecutively, the antisecretory effect is mediated by central and peripheral mechanisms involving the production of PGE2, but not somatostatin, corticotropin-releasing factor and adrenergic mechanisms. Centrally as well as peripherally administered Il-1α are clearly less effective than Il-1β while central and peripheral Il-4, Il-6 and tumor necrosis factor α lack any effect on acid secretion in vivo. Acid production in vitro (isolated glands, parietal cells) is not modulated by Il-1α, Il-1β and TNFα. In rats, intracisternal Il-1β increases the serum gastrin-level while TNFα and Il-1α stimulate the release into the portalvenous blood of peptide YY and gastrin, respectively. These in vivo-effects on gastrin may counterbalance acid inhibition. On the other hand, stimulation of gastrin release from primary cultures of rabbit antral G-cells probably reflects a direct effect on this cell type of Il-1β and TNF-α (0.01–10 ng/ml). In all likelyhood, acid inhibition by central Il-1β is physiologically not relevant. However, gastroprotection by central Il-1β suggests pathophysiological relevance e.g. in septic conditions or stress, where centrally released Il-1β might inhibit acid secretion thereby conferring protection against hemorrhagic lesions of the gastric mucosa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adrian TE, Savage AP, Sagor GR, Allen JM, Bacarese-Hamilton AJ, Tatemoto K, Polak JM, Bloom SR (1985) Effect of peptide YY on gastric, pancreatic, and biliary function in humans. Gastroenterology 89:494–499.

    PubMed  CAS  Google Scholar 

  2. Arend WP (1991) Interleukin-1 receptor antagonist a new member of the interleukin-1 family. J Clin Invest 88:1445–1451.

    Article  PubMed  CAS  Google Scholar 

  3. Banks WA, Kastin AJ (1991) Blood to brain transport of interleukin links the immune and central nervous systems. Life Sci 48:PL117–PL121.

    Article  PubMed  CAS  Google Scholar 

  4. Banks WA, Kastin AJ, Durham DA (1989) Bidirectional transport of interleukin-1 alpha across the blood brain barrier. Brain Res Bull 23:433–437.

    Article  PubMed  CAS  Google Scholar 

  5. Banks WA, Ortiz L, Plotkin SR, Kastin AJ (1991) Human interleukin (Il) 1α, murine Il-1α and murine Il-1β are transported from blood to brain in the mouse by a shared saturable mechanism. J Pharmacol Exp Ther 259:988–996.

    PubMed  CAS  Google Scholar 

  6. Berkenbosch F, Van Oers J, Del Rey A, Tilders F, Besedovsky H (1987) Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238:524–526.

    Article  PubMed  CAS  Google Scholar 

  7. Breder CD, Dinarello CA, Saper CB (1988) Interleukin-1 immunoreactive innervation of the human hypothalamus. Science 240:321–324.

    Article  PubMed  CAS  Google Scholar 

  8. Cornell RP, Schwartz DB (1989) Central administration of interleukin 1 elicits hyperinsulinemia in rats. Am J Physiol 257 (Regulatory Integrative Comp Physiol 26):R839–R846.

    PubMed  CAS  Google Scholar 

  9. Dinarello C (1988) Biology of interleukin-1. FASEB J 2:108–115.

    PubMed  CAS  Google Scholar 

  10. Dinarello C, Thompson RC (1991) Blocking Il-1: interleukin-1 receptor antagonist in vivo and in vitro. Immunol. Today 12:404–410.

    Article  PubMed  CAS  Google Scholar 

  11. Farrar WL, Kilian PL, Ruff MR, Hill JM, Pert CB (1987) Visualization and characterization of interleukin-1 receptors in brain. J Immunol 139:459–463.

    PubMed  CAS  Google Scholar 

  12. Fontana A, Weber E, Dayer J (1984) Synthesis of interleukin 1/endogenous pyrogen in the brain of endotoxin-treated mice. J Immunol 133:1696–1698.

    PubMed  CAS  Google Scholar 

  13. Hashimoto M, Ishikawa Y, Yokota S, Goto F, Bando T, Sakakibara Y, Iriki M (1991) Action site of circulating interleukin-1 on the rabbit brain. Brain Res 540:217–223.

    Article  PubMed  CAS  Google Scholar 

  14. Higgins GA, Olschowka JA (1991) Induction of interleukin-1β mRNA in adult rat brain. Mol Brain Res 9:143–148.

    Article  PubMed  CAS  Google Scholar 

  15. Ishikawa T, Nagata S, Ago Y, Takahashi K, Karibe M (1990) The central inhibitory effect of interleukin-1 on gastric acid secretion. Neurosci Lett 119:114–117.

    Article  PubMed  CAS  Google Scholar 

  16. Katsuura G, Gottschall PE, Arimura A (1988) Identification of a high-affinity receptor for interleukin-1 beta in rat brain. Biochem Biophys Res Commun 156:61–67.

    Article  PubMed  CAS  Google Scholar 

  17. Katsuura G, Gottschall PE, Dahl RR, Arimura A (1989) Interleukin-1 beta increases prostaglandin E2 in the rat astrocyte cultures: modulatory effect of neuropeptides. Endocrinology 124:3125–3127.

    Article  PubMed  CAS  Google Scholar 

  18. Katsuura G, Arimura A, Koves K, Gottschall PE (1990) Involvement of organum vasculosum of lamina terminalis and preoptic area in interleukin-1β-induced ACTH release. Am J Physiol 258:E163–172.

    PubMed  CAS  Google Scholar 

  19. Lechan RM, Toni R, Clark BD, Cannon JG, Shaw AR, Dinarello CA, Reichlin S (1990) Immunoreactive interleukin-1β localization in the rat forebrain. Brain Res 514:135–140.

    Article  PubMed  CAS  Google Scholar 

  20. March CJ, Mosley B, Larsen A, Ceretti DP, Braedt G, Price V, Gillis S, Henney CS, Kronheim SR, Grabstein K, Conlon PJ, Hopp TP, Cosman D (1985) Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 315:641–647.

    Article  PubMed  CAS  Google Scholar 

  21. Mugridge KG, Donati D, Silvestri S, Parente L (1989) Arachidonic acid lipoxygenation may be involved in interleukin-1 induction of prostaglandin biosynthesis. J Pharmacol Exp Ther 250:714–720.

    PubMed  CAS  Google Scholar 

  22. Murakami N, Sakata Y, Watanabe T (1990) Central action sites of interleukin-1β for inducing fever in rabbits. J Physiol Lond 428:299–312.

    PubMed  CAS  Google Scholar 

  23. Nishida T, Nishino N, Takano M, Sekiguchi Y, Kawai K, Mizuno K, Nakai S, Masui Y, Hirai Y (1989) Molecular cloning and expression of rat interleukin-1α cDNA. J Biochem 105:351–357.

    PubMed  CAS  Google Scholar 

  24. Okumura T, Uehara A, Okamura K, Takasugi Y, Namiki M (1990) Inhibition of gastric pepsin secretion by peripherally or centrally injected interleukin-1 in rats. Biochem Biophys Res Commun 167: 956–961.

    Article  PubMed  CAS  Google Scholar 

  25. Okumura T, Uehara A, Kitamori S, Okamura K, Takasugi Y, Namiki M (1991) Prevention by interleukin-1 of intracisternally injected thyrotropin-releasing hormone (TRH)-induced gastric mucosal lesions in rats. Neurosci Lett 125:31–33.

    Article  PubMed  CAS  Google Scholar 

  26. Puurunen J (1983) Central nervous system effects of arachidonic acid PGE2, PGF2, PGD2, and PGI2, on gastric secretion in the rat. Br J Pharmacol 80:255–262.

    PubMed  CAS  Google Scholar 

  27. Rivier C, Vale W, Brown M (1989) In the rat, interleukin-1α and-β stimulate adrenocorticotropin and catecholamine release. Endocrinology 125:3096–3102.

    Article  PubMed  CAS  Google Scholar 

  28. Robert A, Olafsson S, Lancaster C, Zhang WR (1991) Interleukin-1 is cytoprotective, antisecretory, stimulates PGE2 synthesis by the stomach, and retards gastric emptying. Life Sci 48:123–134.

    Article  PubMed  CAS  Google Scholar 

  29. Rubin JT, Lotze MT (1992) Acute gastric mucosal injury associated with the systemic administration of interleukin-4. Surgery 111:274–280.

    PubMed  CAS  Google Scholar 

  30. Saperas E, Taché Y (1993) Central interleukin-1β-induced inhibition of acid secretion in rats: specificity of action. Life Sci 52:785–792.

    Article  PubMed  CAS  Google Scholar 

  31. Saperas E, Yang H, Rivier C, Taché Y (1990) Central action of recombinant interleukin-1 to inhibit acid secretion in rats. Gastroenterology 99:1599–1606.

    PubMed  CAS  Google Scholar 

  32. Saperas E, Yang H, Taché Y (1992) Interleukin-1β acts at hypothalamic sites to inhibit gastric acid secretion in rats. Am J Physiol 263 (Gastrointest Liver Physiol 26):G414–G418.

    PubMed  CAS  Google Scholar 

  33. Saphier D, Feldman S (1986) Effects of stimulation of the preoptic area on hypothalamic and paraventricular nucleus unit activity and corticosterone secretion in freely moving rats. Neuroendocrinology 42:167–173.

    Article  PubMed  CAS  Google Scholar 

  34. Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W (1987) Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 238:522–524.

    Article  PubMed  CAS  Google Scholar 

  35. Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or the spinal cord in the rat. J Comp Neurol 205:260–272.

    Article  PubMed  CAS  Google Scholar 

  36. Shibasaki T, Yamauchi N, Hotta M, Imaki T, Oda T, Ling N, Demura H (1991) Interleukin-1 inhibits stress-induced gastric erosions in rats. Life Sci 48:2267–2273.

    Article  PubMed  CAS  Google Scholar 

  37. Somiya H, Tonoue T (1984) Neuropeptides as central integrators of autonomie nerve activity: effects of TRH, SRIF, VIP and bombesin on gastric and adrenal nerves. Regul Pept 9:47–52.

    Article  PubMed  CAS  Google Scholar 

  38. Stephens RL, Ishikawa T, Weiner H, Novin D, Taché Y (1988) TRH analog, RX 77368, injected into the dorsal vagal complex stimulates gastric secretion in rats. Am J Physiol 254:G639–G643.

    PubMed  CAS  Google Scholar 

  39. Taché Y (1992) Central mechanisms in control of gastric acid secretion. Curr Opinion Gastroenterol 7:842–848.

    Article  Google Scholar 

  40. Uehara A, Okumura T, Kitamori S, Takasugi Y, Namiki M (1990) Interleukin-1: A cytokine that has potent antisecretory and anti-ulcer actions via the central nervous system. Biochem Biophys Res Commun 173:585–590.

    Article  PubMed  CAS  Google Scholar 

  41. Ulich TR, Guo K, Irwin B, Remick DG, Navatelis GN (1990) Endotoxin-induced cytokine gene expression in vivo. Am J Pathol 137:1173–1185.

    PubMed  CAS  Google Scholar 

  42. Wallace JL, Keenan CM, Mugridge KG, Parente L (1990) Reduction of the severity of experimental gastric and duodenal ulceration by interleukin-1β Eur J Pharmacol 86:279–284.

    Article  Google Scholar 

  43. Wallace J, Cucala M, Mugrigdge K, Parente L (1991) Secretagogue-specific effects of interleukin-1 on gastric acid secretion. Am J Physiol 261 (Gastrointest Liver Physiol. 24):G559–G564.

    PubMed  CAS  Google Scholar 

  44. Walter JS, Meyers P, Krueger JM (1989) Microinjection of interleukin-1 into brain: separation of sleep and fever responses. Physiol Behav 45:169–176.

    Article  PubMed  CAS  Google Scholar 

  45. Wei JY, Taché Y (1990) Alterations of efferent discharges of the gastric branch of the vagus nerve by intracisternal injection of peptides influencing gastric function in rats (Abstract). Gastroenterology 98:A531.

    Google Scholar 

  46. Weigert N, Schaffer K, Classen M, Schepp W (in press) Gastrin release from cultured rabbit antral G-cells: stimulation by cholinergic agonists and cytokines (Abstract). Hepatogastroenterology.

    Google Scholar 

  47. Weigert N, Wegner U, Schusdziarra V, Classen M, Schepp W (1994) Functional characterization of a muscarinic receptor stimulating gastrin release from rabbit antral G-cells in primary culture. Eur J Pharmacol 264:337–344.

    Article  PubMed  CAS  Google Scholar 

  48. Zamir O, Hasselgren P-O, Higashiguchi T, Frederick JA, Fischer JE (1992) Effect of sepsis or cytokine administration on release of gut peptides. Am J Surg 163:181–185.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schepp, W. (1995). Exokrine und endokrine Funktionen des Magens. In: Beger, H.G., Manns, M.P., Greten, H. (eds) Molekularbiologische Grundlagen der Gastroenterologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79782-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79782-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59325-6

  • Online ISBN: 978-3-642-79782-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics