Skip to main content

Development of Stationary Crossflow Vortices on a Swept Wing

  • Conference paper
Laminar-Turbulent Transition

Part of the book series: IUTAM Symposia ((IUTAM))

Summary

Stability experiments are conducted in the ASU Unsteady Wind Tunnel on a 45° swept airfoil. The surface of the is polished to 0.25 μm rms. Under these conditions, natural stationary crossflow vortices are not measurable. This state is used to measure roughness-induced stationary crossflow. Spanwise arrays of 70–150 μm roughness elements are introduced near the attachment line. Detailed hot-wire measurements are taken to document the growth of these vortices. The data clearly show that linear stability theory does not accurately predict the growth rates of stationary crossflow waves under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reed, H.L., Saric, W.S. 1989. Stability of Three-Dimensional Boundary Layers. Ann. Rev. Fluid Mech. vol. 21, 235.

    Article  MathSciNet  Google Scholar 

  2. Arnal, D. 1992. Boundary-layer transition: Prediction, application to drag reduction. Special Course on Skin Friction Drag Reduction, AGARD Report 786, March 1992.

    Google Scholar 

  3. Arnal, D. 1993. Predictions based on linear theory. Progress in Transition Modelling, AGARD Report 793, March 1993.

    Google Scholar 

  4. Saric, W.S. 1994. Low-speed boundary-layer transition experiments. Transition: Experiments, Theory & Computations. Eds. T.C. Corke, G. Erlebacher, M.Y. Hussaini, Oxford.

    Google Scholar 

  5. Bippes, H. 1990. Instability feature appearing on swept wing configurations. Laminar-Turbulent Transition, Vol III, eds. D. Arnal and R. Michel, Springer-Verlag.

    Google Scholar 

  6. Bippes, H. 1991. Experiments on transition in three-dimensional accelerated boundary-layer flows. In Proc. R.A.S. Boundary-Layer Transition and Control, Cambridge, U.K.

    Google Scholar 

  7. Bippes, H., Müller, B. 1990. Disturbance growth in an unstable three-dimensional boundary layer. In Numerical and Physical Aspects of Aerodynamic Flows IV (ed. T. Cebeci). Springer.

    Google Scholar 

  8. Deyhle, H. Höhler, G., Bippes, H. 1993. Experimental investigation of instability wave-propagation in a 3-D boundary-layer flow. AIAA J., 31.

    Google Scholar 

  9. Kachanov, Yu.S., Tararykin, O.I. 1990. The experimental investigation of the travelling waves in a three-dimensional boundary layer. Laminar-Turbulent Transition, Vol III, eds. D. Arnal, R. Michel, Springer-Verlag.

    Google Scholar 

  10. Arnal, D., Casalis, G., Juillen, J.C. 1990. Experimental and theoretical analysis of natural transition on infinite swept wing. Laminar-Turbulent Transition, Vol. III, eds. D. Arnal and R. Michel, Springer-Verlag.

    Google Scholar 

  11. Arnal, D., Juillen, J.C., Casalis, G. 1991. The effects of wall suction on laminar-turbulent transition in three-dimensional flow. Boundary Layer Stability and Transition to Turbulence, FED-Vol. 114, Eds: D.C. Reda, H.L. Reed, R. Kobayashi, ASME.

    Google Scholar 

  12. Arnal, D., Casalis, G., Copie, M. 1994. Personal Communication.

    Google Scholar 

  13. Kobayashi, R., Kohama, Y., Arai, T., Ukaku, M. 1987. The boundary-layer transition on rotating cones in axial flow with freestream turbulence. JSME Int. J. 30 (261), 423.

    Google Scholar 

  14. Kohama, Y. 1987a. Some expectation on the mechanism of crossflow instability in a swept-wing flow. Acta Mech. 66:21μ38.

    Article  Google Scholar 

  15. Poll, D.I.A. 1985. Some observations of the transition process on the windward face of a long yawed cylinder. J. Fluid Mech. 150, 329

    Article  Google Scholar 

  16. Dagenhart, J.R., Saric, W.S., Mousseux, M.C., Stack, J.P. 1989. Crossflow Vortex Instability and Transition on a 45-Degree Swept Wing. AIAA Paper No. 89-1892.

    Google Scholar 

  17. Kohama, Y., Saric, W.S., Hoos, J.A. 1991. A High-Frequency Secondary Instability of Crossflow Vortices that leads to Transition. Proc. R.A.S. Boundary Layer Transition and Control, Cambridge UK.

    Google Scholar 

  18. Radeztsky, R.H. Jr., Reibert, M.S., Saric, W.S. 1993a. Effect of Micron-Sized Roughness on Transition in Swept-Wing Flows. AIAA Paper No. 93-0076.

    Google Scholar 

  19. Collier, F.S., Malik, M.R. 1988. Curvature effects on stability of three-dimensional laminar boundary layers. AGARD C-P 438.

    Google Scholar 

  20. Dagenhart, J.R. 1981. Amplified Crossflow Disturbances in the Laminar Boundary Layer on Swept Wings with Suction. NASA TP-1902.

    Google Scholar 

  21. Malik, M. R. 1982. COSAL—A black box compressible stability analysis code for transition prediction in three-dimensional boundary layers. NASA CR-165952.

    Google Scholar 

  22. Radeztsky, R.H. Jr., Reibert, M.S., Takagi, S. 1993b. A software solution to temperature-induced hot-wire voltage drift. In Proc. Third Inter’l Symp. on Thermal Anemometry, ASME-FED, Washington, DC.

    Google Scholar 

  23. Saric W.S. 1992b. The ASU Transition Research Facility. AIAA Paper No. 92-3910.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Radeztsky, R.H., Reibert, M.S., Saric, W.S. (1995). Development of Stationary Crossflow Vortices on a Swept Wing. In: Kobayashi, R. (eds) Laminar-Turbulent Transition. IUTAM Symposia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79765-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79765-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79767-5

  • Online ISBN: 978-3-642-79765-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics