Clotting and Immune Defense in Limulidae

  • T. Muta
  • S. Iwanaga
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 15)


The evolution of an effective system for microbial defense is central to the survival and perpetuity of higher organisms. Invertebrates, which lack typical immune systems, have developed unique systems to detect and respond to microbial surface antigens, such as lipopolysaccharide (LPS), peptideglycan, and β-(l,3)-glucan. Because both invertebrates and vertebrate animals respond to these substances, it is likely that a system recognizing these epitopes emerged at a very early stage in the evolution of these animals.


Horseshoe Crab TGase Activity Serine Protease Domain Hemolymph Plasma Hemocyte Lysate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aketagawa J, Miyata T, Ohtsubo S, Nakamura T, Morita T, Hayashida H, Miyata T, Iwanaga S, Takao T, Shimonishi Y (1986) Primary structure of Limulus anticoagulant anti-lipopolysaccharide factor. J Biol Chem 261: 7357–7365PubMedGoogle Scholar
  2. Armstrong PB, Mangel WF, Wall JS, Hainfield JF, Van HK, Ikai A, Quigley JP (1991) Structure of alpha 2-maeroglobulin from the arthropod Limulus polyphemus. J Biol Chem 266: 2526–2530PubMedGoogle Scholar
  3. Armstrong PB, Armstrong MT, Quigley JP (1993) Involvement of alpha 2-macroglobulin and C-reactive protein in a complement-like hemolytic system in the arthropodLimulus polyphemus. Mol Immunol 30: 929–934PubMedCrossRefGoogle Scholar
  4. Bang FB (1956) A bacterial disease of Limulus polyphemus. Bull Johns Hopkins Hosp 98: 325–351PubMedGoogle Scholar
  5. Barr PJ (1991) Mammalian subtilisins: The long-sought dibasic processing endoprotease. Cell 66:1–3PubMedCrossRefGoogle Scholar
  6. Belin D, Wohlwend A, Schleuning W-D, Kruithof EKO, Vassalli J-D (1989) Facultative polypeptide translocation allows a single NA to encode the secreted and cytosolic forms of plasminogen activators inhibitor 2. EMBO J 8: 3287–3294PubMedGoogle Scholar
  7. Bevilacqua MP, Stengelin S, Gimbrone MA Jr, Seed B (1989) Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243: 1160–1165PubMedCrossRefGoogle Scholar
  8. Bishayee SH, Dorai DT (1980) Isolation and characterization of a sialic acid-binding lectin (carcinoscorpin) from Indian horseshoe crabCarcinoscorpius rotunda cauda. Biqhim Biophys Acta 623: 89–97Google Scholar
  9. Bohn H (1986) Hemolymph clotting in insects. In: Brehelin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York, 188–207CrossRefGoogle Scholar
  10. Boman HG (1994) Antimicrobial peptides, Ciba Foundation Symp 186. Wiley, ChichesterGoogle Scholar
  11. Borriss R, Buettner K, Maentsaelae P (1990) Structure of the beta-1,3–1,4-glucanase gene of Bacillus macerans: Homologies to other beta-glucanases. Mol Gen Genet 222: 278–283PubMedCrossRefGoogle Scholar
  12. Brandin ER, Pistole TG (1983) Polyphemin: A teichoic acid-binding lectin from the horseshoe crab, Limulus polyphemus. Biochem Biophys Res Commun 113: 611–617PubMedCrossRefGoogle Scholar
  13. Brozen R, Sands P, Riesen W, Weissmann G, Lorand L (1987) The antiquity of transglutaminase: an intracellular enzyme from marine sponge cells enhances clotting of lobster plasma. Biol Bull 173: 423Google Scholar
  14. Campbell-Wilkes LK (1973) Thesis, Northwestern University. Univ Microfilms, Ann Arbor, MIGoogle Scholar
  15. Chasan R, Anderson KV (1989) The role ofeasier, an apparent serine protease, in organizing the dorsal-ventral pattern of the Drosophila embryo. Cell 56: 391–400PubMedCrossRefGoogle Scholar
  16. Cheng SM, Suzuki A, Zon G, Liu TY (1986) Characterization of a complementary deoxyribonucleic acid for the coagulogen of Limulus polyphemus. Biochim Biophys Acta 868: 1–8PubMedGoogle Scholar
  17. Chung SI, Scid RC Jr, Liu T-Y (1977) Demonstration of transglutaminase activity in Limulus lysate. Thromb Haemostasis (Abstr) 38: 182Google Scholar
  18. Cohen E (1968) Immunologic observations of the agglutinin of the hemolymph of Limulus polyphemus andBirgus latro. Trans NY Acad Sci 30: 427–443Google Scholar
  19. Cordella-Miele E, Miele L, Mukheijee AB (1990) A novel transglutaminase-mediated post-translational modification of phospholipase A2 dramatically increases its catalytic activity. J Biol Chem 265: 17180–17188PubMedGoogle Scholar
  20. Coughlin P, Sun J, Cerruti L, Salem HH, Bird P (1993) Cloning and molecular characterization of a human intracellular serine proteinase inhibitor. Proc Natl AcaSci USA 90: 9417–9421CrossRefGoogle Scholar
  21. Day NKB, ewurz H, Johannsen R, Finstad J, Good RA (1970) Complement and complement-like activity in lower vertebrates and invertebrates. J Exp Med 132: 941–950PubMedCrossRefGoogle Scholar
  22. Dotto R, Spierer P (1986) A gene required for the specification of dorsal-ventral pattern in Drosophila appears to encode a serine protease. Nature 323: 688–692CrossRefGoogle Scholar
  23. Doege K, Sasaki M, Horigan E, Hassell JR, Yamada Y (1987) Complete primary structure of the rat cartilage proteoglycan core protein deduced from NA clones. J Biol Chem 262: 17757–17767PubMedGoogle Scholar
  24. Donovan MA, Laue TM (1991) A novel trypsin inhibitor from the hemolymph of the horseshoe crab Limulus polyphemus. J Biol Chem 266: 2121–2125PubMedGoogle Scholar
  25. Drickamer K (1988) Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263: 9557–9560PubMedGoogle Scholar
  26. Dubin A, Travis J, Enghild J J, Potempa J (1992) Equine leukocyte elastase inhibitor. Primary structure and identification as a thymosin-binding protein. J Biol Chem 267: 6576–6583PubMedGoogle Scholar
  27. Duvic B, Söderhäll K (1990) Purification and characterization of a β-l,3-glucan binding protein from plasma of the crayfish Pacifastacus leniusculus. J Biol Chem 265: 9327–9332PubMedGoogle Scholar
  28. Enghild J J, Thogersen IB, Salvesen G, Fey GH, Figler NL, Gonias SL, Pizzo SV (1990) Alpha-macroglobulin from Limulus polyphemus exhibits proteinase inhibitory activity and participates in a hemolytic system. Biochemistry 29: 10070–10080PubMedCrossRefGoogle Scholar
  29. Fernandez-Moran H, Marchalonis JJ, Edelman GM (1968) Electron microscopy of a hemagglutinin fromLimulus polyphemus. J Mol Biol 32: 467–469PubMedCrossRefGoogle Scholar
  30. Finstad CL, Good RA, Litman GW (1974) The erythrocyte agglutinin from Limulus polyphemus hemolymph. Molecular structure and biological function. Ann NY Acad Sci 234: 170–182PubMedCrossRefGoogle Scholar
  31. Fortes-Dias CL, Minetti CA, Lin Y, Liu TY (1993) Agglutination activity of Limulus polyphemus coagulogen following limited proteolysis. Comp Biochem Physiol [B] 105: 79–85CrossRefGoogle Scholar
  32. Fuhlendorff J, Clemmensen I, Magnusson S (1987) Primary structure of tetranectin, a plasminogen kringle 4 binding plasma protein: homology with asialoglycoprotein receptors and cartilage proteoglycan core protein. Biochemistry 26: 6757–6764PubMedCrossRefGoogle Scholar
  33. Fujii N, Minetti CA, Nakhasi HL, Chen SW, Barbehenn E, Nunes PH, Nguyen NY (1992) Isolation, NA cloning, and characterization of an 18-a hemagglutinin and amebocyte aggregation factor from Limulus polyphemus. J Biol Chem 267: 22452–22459PubMedGoogle Scholar
  34. Fuller GM, Doolittle RF (1971a) Studies of invertebrate fibrinogen. I. Purification and characterization of fibrinogen from the spiny lobster. Biochemistry 10: 1305–1311PubMedCrossRefGoogle Scholar
  35. Fuller GM, Doolittle RF (1971b) Studies of invertebrate fibrinogen. II. Transformation of lobster fibrinogen into fibrin. Biochemistry 10: 1311–1315PubMedCrossRefGoogle Scholar
  36. Gosalbes MJ, Pérez-González JA, González R, Navarro A (1991) Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(l,3)-(l,4)-glucanase. J Bacteriol 173: 7705–7710PubMedGoogle Scholar
  37. Grépinet O, Chebrou MC, Béguin P (1988) Nucleotide sequence and deletion analysis of the xylanase gene (xyn Z) ofClostridium thermocellum. J Bacteriol 170: 4582–4588PubMedGoogle Scholar
  38. Hoess A, Watson S, Siber GR, Liddington R (1993) Crystal structure of an endotoxin-neutralizing protein from the horseshoe crab, Limulus anti-LPS factor, at 1.5 Å resolution. EMBO J 12: 3351–3356PubMedGoogle Scholar
  39. Hofemeister J, Kurtz A, Borriss R, Knowles J (1986) β-Glucanase gene from Bacillus amylolique-faciens shows extensive homology with that of Bacillus subtilis. Gene 49: 177–187PubMedCrossRefGoogle Scholar
  40. Hosaka M, Nagahama M, Kim WS, Watanabe T, Hatsuzawa K, Ikemizu J, Murakami K, Nakayama K (1991) Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J Biol Chem 266: 12127–12130PubMedGoogle Scholar
  41. Ichinose A, Bottenus RE, Davie EW (1990) Structure of transglutaminase. J Biol Chem 265: 13411–13414PubMedGoogle Scholar
  42. Iwanaga S (1993) The Limulus clotting reaction. Curr Opin Immunol 5: 74–82PubMedCrossRefGoogle Scholar
  43. Iwanaga S, Morita T, Harada T, Nakamura S, Niwa M, Takada K, Kimura T, Sakakibara S (1978) Chromogenic substrates for horseshoe crab clotting enzyme. Its application for the assay of bacterial endotoxin. Haemostasis 7: 183–188PubMedGoogle Scholar
  44. Iwanaga S, Miyata T, Tokunaga F, Muta T (1992) Molecular mechanism of hemolymph clotting system in Limulus. Thromb Res 68: 1–32PubMedCrossRefGoogle Scholar
  45. Iwanaga S, Muta T, Shigenaga T, Miura Y, Seki N, Saito T, Kawabata S (1994a) Role of hemocyte-derived granular components in invertebrate defense. Ann NY Acad Sci 712: 102–116PubMedCrossRefGoogle Scholar
  46. Iwanaga S, Muta T, Shigenaga T, Seki N, Kawano K, Katsu T, Kawabata S (1994b) Structure-function relationships of tachyplesins and their analogues. In: Ciba Foundation Symposium 186 Antimicrobial peptides. Wiley, Chichester, pp 160–175Google Scholar
  47. Johnston GI, Cook RG, Mver RP (1989) Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell 56: 1033–1044PubMedCrossRefGoogle Scholar
  48. Kakinuma A, Asano T, Torii H, Sugino Y (1981) Gelation of Limulus ameboeyte lysate by an antitumor (l–3)-β-d-glucan. Biochem Biophys Res Commun 101: 434–439PubMedCrossRefGoogle Scholar
  49. Kaplan R, Li SS, Kehoe JM (1977) Molecular characterization of limulin, a sialic acid binding lectin from the hemolymph of the horseshoe crab, Limulus polyphemus. Biochemistry 16: 4297–4303PubMedCrossRefGoogle Scholar
  50. Kawano K, Yoneya T, Miyata T, Yoshikawa K, Tokunaga F, Terada Y, Iwanaga S (1990) Antimicrobial peptide, tachyplesin I, isolated from hemocytes of the horseshoe crab (Tachypleus tridentatus). NMR determination of the beta-sheet structure. J Biol Chem 265: 15365–15367PubMedGoogle Scholar
  51. Kikutani H, Inui S, Sato R, Barsumian EL, Owaki H, Yamasaki K, Kaisho T, Uchibayashi N, Hardy RR, Hirano T, Tsunasawa S, Sakiyama F, Suemura M, Kishimoto T (1986) Molecular structure of human lymphocyte receptor for immunoglobulin E. Cell 47: 657–665Google Scholar
  52. Lamb FI, Roberts LM, Lord JM (1985) Nucleotide sequence of cloned NA coding for preproricin. Eur J Biochem 148: 265–270PubMedCrossRefGoogle Scholar
  53. Levin J, Bang FB (1964) The role of endotoxin in the extracellular coagulation of Limulus blood. Bull Johns Hopkins Hosp 115: 265–274PubMedGoogle Scholar
  54. Liu T, Lin Y, Cislo T, Minetti CA, Baba JM, Liu TY (1991) Limunectin. A phosphocholine-binding protein from Limulus amebocytes with adhesion-promoting properties. J Biol Chem 266: 14813–14821PubMedGoogle Scholar
  55. Lloberas J, Perez-Pons J A, Querol E (1991) Molecular cloning, expression and nucleotide sequence of the endo-β-1,3–1,4-o-glucanase gene from Bacillus licheniformis. Predictive structural analyses of the encoded polypeptide. Eur J Biochem 197: 337–343PubMedCrossRefGoogle Scholar
  56. Lorand L, Credo RB, Janus TJ (1981) Factor XIII (fibrin-stabilizing factor). Methods Enzymol 80: 333–341PubMedCrossRefGoogle Scholar
  57. Madaras F, Parkin JD, Castaldi PA (1979) Coagulation in the sand crab (Ovalipes bipustulatus). Thromb Haemostasis 42: 734–742Google Scholar
  58. Marchalonis JJ, Edelman GM (1968) Isolation and characterization of a hemagglutinin from Limulus polyphemus. J Mol Biol 32: 453–465CrossRefGoogle Scholar
  59. Medford JI, Elmer JS, Klee HJ (1991) Molecular cloning and characterization of genes expressed in shoot apical meristems. Plant Cell 3: 359–370PubMedCrossRefGoogle Scholar
  60. Minetti CA, Lin YA, Cislo T, Liu TY (1991) Purification and characterization of an endo toxin-binding protein with protease inhibitory activity from Limulus amebocytes J Biol Chem 266:20773–20780PubMedGoogle Scholar
  61. Miura Y, Kawabata S, Iwanaga S (1994) A Limulus intracellular coagulation inhibitor with characteristics of the serpin superfamily. Purification, characterization, and NA cloning. J Biol Chem 269: 542–547PubMedGoogle Scholar
  62. Miura Y, Kawabata S, Wakamiya Y, Nakamura T, Iwanaga S (1995) A Limulus intracellular coagulation inhibitor type 2. Purification, characterization, NA cloning, and tissue localization. J Biol Chem 270: 558–565PubMedCrossRefGoogle Scholar
  63. Miyata T, Hiranaga M, Umezu M, Iwanaga S (1984a) Amino acid sequence of the coagulogen from Limulus polyphemus hemocytes. J Biol Chem 259: 8924–8933PubMedGoogle Scholar
  64. Miyata T, Usui K, Iwanaga S (1984b) The amino acid sequence of coagulogen isolated from Southeast Asian horseshoe crab, Tachypleus gigas. J Biochem (Tokyo) 95: 1793–1801Google Scholar
  65. Miyata T, Matsumoto H, Hattori M, Sakaki Y, Iwanaga S (1986) Two types of coagulogen NAs found in horseshoe crab (Tachypleus tridentatus) hemocytes: Molecular cloning and nucleotide sequences. J Biochem (Tokyo) 100: 213–220Google Scholar
  66. Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M, Takao T, Shimonishi Y (1989) Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II. Chemical structures and biological activity. J Biochem (Tokyo) 106: 663–668Google Scholar
  67. Morgenstern KA, Henzel WJ, Baker JB, Wong S, Pastuszyn A, Kisiel W (1993) Isolation and characterization of an intracellular serine proteinase inhibitor from a monkey kidney epithelial cell line. J Biol Chem 268: 21560–21568PubMedGoogle Scholar
  68. Morita T, Tanaka S, Nakamura T, Iwanaga S (1981) A new (l–3)-β-d-glucan-mediated coagulation pathway found in Limulus amebocytes. FEBS Lett 129: 318–321CrossRefGoogle Scholar
  69. Morita T, Ohtsubo S, Nakamura T, Tanaka S, Iwanaga S, Ohashi K, Niwa M (1985) Isolation and biological activities of Limulus anticoagulant (anti-LPS factor) which interact with lipopolysac-charide (LPS). J Biochem (Tokyo) 97: 1611–1620Google Scholar
  70. Murphy N, Monnell DJ, Cantwell BA (1984) The DNA sequence of the gene and genetic control sites for the excreted B. subtilis enzyme β-glucanase. Nucleic Acid Res 12: 5355–5367PubMedCrossRefGoogle Scholar
  71. Muta T, Miyata T, Tokunaga F, Nakamura T, Iwanaga S (1987) Primary structure of anti-lipopolysaccharide factor from American horseshoe crab, Limulus polyphemus. J Biochem (Tokyo) 101: 1321–1330Google Scholar
  72. Muta T, Fujimoto T, Nakajima H, Iwanaga S (1990a) Tachyplesins isolated from hemocytes of Southeast Asian horseshoe crabs (Carcinoscorpius rotundicauda and Tachypleus gigas): Identification of a new tachyplesin, tachyplesin III, and a processing intermediate of its precursor. J Biochem (Tokyo) 108: 261–266Google Scholar
  73. Muta T, Hashimoto R, Miyata T, Nishimura H, Toh Y, Iwanaga S (1990b) Proclotting enzyme from horseshoe crab hemocytes. NA cloning, disulfide locations, and subcellular localization. J Biol Chem 265: 22426–22433PubMedGoogle Scholar
  74. Muta T, Miyata T, Misumi Y, Tokunaga F, Nakamura T, Toh Y, Ikehara Y, Iwanaga S (1991) Limulus factor C. An endotoxin-sensitive serine protease zymogen with a mosaic structure of complement-like, epidermal growth factor-like, and lectin-like domains. J Biol Chem 266: 6554–6561Google Scholar
  75. Muta T, Oda T, Iwanaga S (1993) Horseshoe crab coagulation factor B. A unique serine protease zymogen activated by cleavage of an Ile-Ile bond. J Biol Chem 268: 21384–21388PubMedGoogle Scholar
  76. Muta T, Seki N, Takaki Y, Hashimoto R, Oda T, Iwanaga A, Tokunaga F, Iwanaga S (1995) Purified horseshoe crab factor G: Reconstitution and characterization of the (1–3)-β-d-glucan-sensitive serine protease cascade. J Biol Chem 270: 892–897PubMedCrossRefGoogle Scholar
  77. Müller-Eberhard HJ (1988) Molecular organization and function of the complement system. Annu Rev Biochem 57: 321–347PubMedCrossRefGoogle Scholar
  78. Mürer EH, Levin J, Holme R (1975) Isolation and studies of the granules of the amebocytes of Limulus polyphemus, the horseshoe crab. J Cell Physiol 86: 533–542PubMedCrossRefGoogle Scholar
  79. Nakamura S, Iwanaga S, Harada T, Niwa M (1976a) A clottable protein (coagulogen) from amoebocyte lysate of Japanese horseshoe crab (Tachypleus tridentatus). Its isolation and biochemical properties. J Biochem (Tokyo) 80: 1011–1021Google Scholar
  80. Nakamura S, Takagi T, Iwanaga S, Niwa M, Takahashi K (1976b) Amino acid sequence studies on the fragments produced from horseshoe crab coagulogen during gel formation: Homologies with primate fibrinopeptide B. Biochem Biophys Res Commun 72: 902–908PubMedCrossRefGoogle Scholar
  81. Nakamura S, Morita T, Harada-Suzuki T, Iwanaga S, Takahashi K, Niwa M (1982) A clottable enzyme associated with the hemolymph coagulation system of horseshoe crab (Tachypleus tridentatus): Its purification and characterization. J Biochem (Tokyo) 92: 781–792Google Scholar
  82. Nakamura T, Morita T, Iwanaga S (1985) Intracellular proclotting enzyme in Limulus (Tachypleus tridentatus) hemocytes: its purification and properties. J Biochem (Tokyo) 97: 1561–1574Google Scholar
  83. Nakamura T, Morita T, Iwanaga S (1986a) Lipopolysaccharide-sensitive serine-protease zymogen (factor C) found in Limulus hemocytes. Isolation and characterization. Eur J Biochem 154: 511–521PubMedCrossRefGoogle Scholar
  84. Nakamura T, Horiuchi T, Morita T, Iwanaga S (1986b) Purification and properties of intracellular clotting factor, factor B, from horseshoe crab (Tachypleus tridentatus) hemocytes. J Biochem (Tokyo) 99: 847–857Google Scholar
  85. Nakamura T, Hirai T, Tokunaga F, Kawabata S, Iwanaga S (1987) Purification and amino acid sequence of Kunitz-type protease inhibitor found in the hemocytes of horseshoe crab (Tachypleus tridentatus). J Biochem (Tokyo) 101: 1297–1306Google Scholar
  86. Nakamura T, Tokunaga F, Morita T, Iwanaga S (1988a) Interaction between lipopolysaccharide and intracellular serine protease zymogen, factor C, from horseshoe crab (Tachypleus tridentatus) hemocytes. J Biochem (Tokyo) 103: 370–374Google Scholar
  87. Nakamura T, Tokunaga F, Morita T, Iwanaga S, Kusumoto S, Shiba T, Kobayashi T, Inoue K (1988b) Intracellular serine-protease zymogen, factor C, from horseshoe crab hemocytes. Its activation by synthetic lipid A analogues and acidic phospholipics. Eur J Biochem 176: 89–94PubMedCrossRefGoogle Scholar
  88. Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, Niwa M, Takao T, Shimonishi Y (1988c) Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem 263: 16709–16713PubMedGoogle Scholar
  89. Neame PJ, Choi HU, Rosenberg LC (1989) The isolation and primary structure of a 22-kDa extracellular matrix protein from bovine skin. J Biol Chem 264: 5474–5479PubMedGoogle Scholar
  90. Nguyen NY, Suzuki A, Boykins RA, Liu TY (1986a) The amino acid sequence of Limulus C-reactive protein. Evidence of polymorphism. J Biol Chem 261: 10456–10465PubMedGoogle Scholar
  91. Nguyen NY, Suzuki A, Cheng SM, Zon G, Liu TY (1986b) Isolation and characterization ofLimulus C-reactive protein genes. J Biol Chem 261: 10450–10455PubMedGoogle Scholar
  92. Noguchi H (1903) A study of immunization - haemolysins, agglutinins, precipitins and coagulins in cold-blooded animals. Zentralbl Bakteriol Abt Orig 33: 353–362Google Scholar
  93. Ochiai M, Ashida M (1988) Purification of a β-1,3-glucan recognition protein in the prophenoloxidase activating system from hemolymph of the silkworm, Bombyx mori. J Biol Chem 263: 12056–12062PubMedGoogle Scholar
  94. Ohashi K, Niwa M, Nakamura T, Morita T, Iwanaga S (1984) Anti-LPS factor in the horseshoe crab, Tachypleus tridentatus. Its hemolytic activity on the red blood cell sensitized with lipopolysaccharide. FEBS Lett 176: 207–210PubMedCrossRefGoogle Scholar
  95. Olafsen J A (1986) Invertebrate lectins-Biochemical heterogeneity as a possible key to their biological function. In: Brehelin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York, pp 94–111CrossRefGoogle Scholar
  96. Ornberg RL, Reese TS (1979) Secretion in Limulus amebocytes is by exocytosis. Prog Clin Biol Res 29: 125–130PubMedGoogle Scholar
  97. Osmand AP, Friedenson B, Gerwurz H, Painter RH, Hofmann T, Shelton E (1977) Characterization of C-reactive protein and the complement subcomponent Clt as homologous proteins displaying cyclic pentameric symmetry (pentraxins). Proc Natl Acad Sci USA 74: 739–743PubMedCrossRefGoogle Scholar
  98. Pearson FC, Bohon J, Lee W, Bruszer G, Sagona M, Dawe R, Jakubowski G, Morrison D, Dinarello C (1984) Comparison of chemical analyses of hollow-fiber dialyzer extracts. Artif Organs 8: 291–298PubMedCrossRefGoogle Scholar
  99. Perez-Paya E, Thiaudiere E, Abad C, Dufourcq J (1991) Selective labelling of melittin with a fluorescent dansylcadaverine probe using guinea-pig fiver transglutaminase. FEBS Lett 278:51–54PubMedCrossRefGoogle Scholar
  100. Quigley JP, Armstrong PB (1994) Invertebrate α2-macroglobulin: Structure-function and the ancient thiol ester bond. Ann NY Acad Sci 712: 131–145PubMedCrossRefGoogle Scholar
  101. Remold-O’Donnell E, Chin J, Alberts M (1992) Sequence and molecular characterization of human monocyte/neutrophil elastase inhibitor. Proc Natl Acad Sci USA 89: 5635–5639PubMedCrossRefGoogle Scholar
  102. Robey FA, Liu T-Y (1981) Limulin: A C-reactive protein fromLimuluspolyphemus J Biol Chem 256: 969–975PubMedGoogle Scholar
  103. Roth RI, Chen JC-R, Levin J (1989) Stability of gels formed following coagulation of Limulus amebocyte lysate. Lack of covalent crosslinking of coagulin. Thromb Res 55: 25–36PubMedCrossRefGoogle Scholar
  104. Saito T, Kawabata S, Hirata M, Iwanaga S (1995a) A novel type ofLimulus leetin-L6: Purification, covalent structure and antibacterial activity. J Biol Chem 270: 14493–14499PubMedCrossRefGoogle Scholar
  105. Saito T, Kawabata S, Shigenaga T, Takayenoki Y, Cho J, Nakajima H, Hirata, M, Iwanaga S (1995b) A novel big defensin identified in horseshoe crab hemocytes. Isolation, amino acid sequence and antibacterial activity. J Biochem (Tokyo) 117: 1131–1137Google Scholar
  106. Seki N, Muta T, Oda T, Iwaki D, Kuma K, Miyata T, Iwanaga S (1994) Horseshoe crab (1,3)-β-d-glucan-sensitive coagulation factor G. A serine protease zymogen heterodimer with similarities to β-glucan-binding proteins. J Biol Chem 269: 1370–1374PubMedGoogle Scholar
  107. Shareck F, Roy C, Yaguchi M, Morosoli R, Kluepfel D (1991) Sequences of three genes specifying xylanases in Streptomyces lividans. Gene 107: 75–82PubMedCrossRefGoogle Scholar
  108. Shen SH, Chrétien P, Bastien L, Slilaty SN (1991) Primary sequence of the glucanase gene from Oerskovia xanthineolytica. Expression and purification of the enzyme from Escherichia coli. J Biol Chem 266: 1058–1063PubMedGoogle Scholar
  109. Shigenaga T, Muta T, Toh Y, Tokunaga F, Iwanaga S (1990) Antimicrobial tachyplesin peptide precursor. NA cloning and cellular localization in the horseshoe crab (Tachypleus tridentatus). J Biol Chem 265: 21350–21354PubMedGoogle Scholar
  110. Shigenaga T, Takayenoki Y, Kawasaki S, Seki N, Muta T, Toh Y, Ito A, Iwanaga S (1993) Separation of large and small granules from horseshoe crab (Tachypleus tridentatus) hemocytes and characterization of their components. J Biochem (Tokyo) 114: 307–316Google Scholar
  111. Shimizu S, Ito M, Niwa M (1977) Lectins in the hemolymph of Japanese horseshoe crab, Tachypleus tridentatus. Biochim Biophys Acta 500: 71–79PubMedCrossRefGoogle Scholar
  112. Shimoi H, Iimura Y, Obata T, Tadenuma M (1992) Molecular structure of Rarobacter faecitabidus protease I. A yeast-lytic serine protease having meannose-binding activity. J Biol Chem 267: 25189–25195PubMedGoogle Scholar
  113. Siegelman MH, van de Rijn M, Weissman IL (1989) Mouse lymph node homing receptor NA clone encodes a glycoprotein revealing tandem interaction domains. Science 243: 1165–1172PubMedCrossRefGoogle Scholar
  114. Söderhäll K, Smith VJ (1986) The prophenoloxidase system: The biochemistry of its activation and role in arthropod cellular immunity with special references to crustaceans. In: Brehélin M (ed) Immunity in Invertebrates. Springer, Berlin Heidelberg New York, pp 208–223CrossRefGoogle Scholar
  115. Söderhäll K, Rögener W, Söderhäll I, Newton RP, Ratcliff NA, (1988) The properties and purification of a Blaberus cranifer plasma protein which enhances the activation of haemocyte prophenoloxidase by a β-l,3-gluean. Insect Biochem 18: 323–330CrossRefGoogle Scholar
  116. Sottrup JL, Borth W, Hall M, Quigley JP, Armstrong PB (1990) Sequence similarity between alpha 2-macroglobulin from the horseshoe crab, Limulus polyphemus, and proteins of the alpha 2-macroglobulin family from mammals. Comp Biochem Physiol B 96: 621–625CrossRefGoogle Scholar
  117. Srimal S, Miyata T, Kawabata S, Morita T, Iwanaga S (1985) The complete amino acid sequence of coagulogen isolated from Southeast Asian horseshoe crab, Carcinoscoxpius rotundicauda. J Biochem (Tokyo) 98: 305–318Google Scholar
  118. Sugo T, Kato H, Iwanaga S, Takada K, Sakakibara S (1985) Kinetic studies on surface-mediated activation of bovine factor XII and prekallikrein. Effect of kaolin and high-Mr kininogen on the activation reactions. Eur J Biochem 146: 43–50PubMedCrossRefGoogle Scholar
  119. Takagi T, Hokama Y, Miyata T, Morita T, Iwanaga S (1984) Amino acid sequence of Japanese horseshoe crab (Tachypleus tridentatus) coagulogen B chain: completion of the coagulogen sequence. J Biochem (Tokyo) 95: 1445–1457Google Scholar
  120. Takeya H, Nishida S, Miyata T, Kawada S, Saisaka Y, Morita T, Iwanaga S (1992) Coagulation factor X activating enzyme from Russell’s viper venom (RVV-X). A novel metalloproteinase with disintegriri (platelet aggregation inhibitor)-like and C-type lectin-like domains. J Biol Chem 267: 14109–14117PubMedGoogle Scholar
  121. Tanaka S, Iwanaga S (1993) Limulus test for detecting bacterial endotoxins. Methods Enzymol 223: 358–364PubMedCrossRefGoogle Scholar
  122. Tanaka S, Nakamura T, Morita T, Iwanaga S (1982) Limulus anti-LPS factor: An anticoagulant which inhibits the endotoxin-mediated activation ofLimulus coagulation system. Biochem Biophys Res Commun 105: 717–723PubMedCrossRefGoogle Scholar
  123. Teschauer WF, Mentele R, Sommerhoff CP (1993) Primary structure of a porcine leukocyte serpin. Eur J Biochem 217: 519–526PubMedCrossRefGoogle Scholar
  124. Toh Y, Mizutani A, Tokunaga F, Muta T, Iwanaga S (1991) Morphology of the granular hemocytes of the Japanese horseshoe crab Tachypleus tridentatus and immunocytochemical localization of clotting factors and antimicrobial substances. Cell Tissue Res 266: 137–147CrossRefGoogle Scholar
  125. Tokunaga F, Miyata T, Nakamura T, Morita T, Kuma K, Miyata T, Iwanaga S (1987) Lipopolysaccharide-sensitive serine-protease zymogen (factor C) of horseshoe crab hemocytes. Identification and alignment of proteolytic fragments produced during the activation show that it is a novel type of serine protease. Eur J Biochem 167: 405–416PubMedCrossRefGoogle Scholar
  126. Tokunaga F, Nakajima H, Iwanaga S (1991) Further studies on lipopolysaccharide-sensitive protease zymogen (factor C). Its isolation from Limulus polyphemus hemocytes and identification as an intracellular zymogen activated by alpha-chymotropsin, not by trypsin. J Biochem (Tokyo) 109: 150–157Google Scholar
  127. Tokunaga F, Yamada M, Miyata T, Ding YL, Hiranaga KM, Muta T, Iwanaga S, Ichinose A, Davie EW (1993a) Limulus hemocyte transglutaminase. Its purification and characterization, and identification of the intracellular substrates. J Biol Chem 268: 252–261PubMedGoogle Scholar
  128. Tokunaga F, Muta T, Iwanaga S, Ichinose A, Davie EW, Kuma K, Miyata T (1993b) Limulus hemocyte transglutaminase. NA cloning, amino acid sequence, and tissue localization. J Biol Chem 268: 262–268PubMedGoogle Scholar
  129. Tsai H, Hirsch HJ (1981) The primary structure of fulvocin C fromMyxococcus fulvus. Biochim Biophys Acta 667: 213–217PubMedGoogle Scholar
  130. Vaith P, Uhlenbruck G, Müller WEG, Cohen E (1979) Reactivity ofLimulus polyphemus hemolymph with d-glucuronic acid containing glycosubstances. Prog Clin Biol Res 29: 579–587PubMedGoogle Scholar
  131. Von Heijne G (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133: 17–21CrossRefGoogle Scholar
  132. Von Hejine G, Liljestrom P, Mikus P, Andersson H, Ny T (1991) The efficiency of the uncleaved secretion signal in the plasminogen activator inhibitor type 2 protein can be enhanced by point mutations that increase its hydrophobicity. J Biol Chem 266: 15240–15243Google Scholar
  133. White RT, Damm D, Miller J, Spratt K, Schilling J, Hawgood S, Benson B, Cordell B (1985) Isolation and characterization of the human pulmonary surfactant apoprotein gene. Nature 317: 361–363PubMedCrossRefGoogle Scholar
  134. Yahata N, Watanabe T, Nakamura Y, Yamamoto Y, Kamimiya S, Tanaka H (1990) Structure of the gene encoding β-l,3-glueanase A1 of Bacillus circulans WL-12. Gene 86: 113–117PubMedCrossRefGoogle Scholar
  135. Zou Z, Anisowicz A, Hendrix MJC, Thor A, Neveu M, Sheng S, Rafidi K, Sefter E, Sager R (1994) Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 263: 526–529PubMedCrossRefGoogle Scholar
  136. Zverlov W, Laptev DA, Tishkov VI, Velikodvorskaja GA (1991) Nucleotide sequence of the Clostridium thermocellum laminarinase gene. Biochem Biophys Res Commun 181: 507–512PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • T. Muta
    • 1
  • S. Iwanaga
    • 1
  1. 1.Department of Biology, Faculty of Science and Department of Molecular Biology, Graduate School of Medical ScienceKyushu University 33FukuokaJapan

Personalised recommendations