Skip to main content

Immune Function α2-Macroglobulin in Invertebrates

  • Chapter
Invertebrate Immunology

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 15))

Abstract

Proteases play important roles in a variety of immune processes, including blood clotting and clot resolution (Furie and Furie 1992), complement activation (Reid and Porter 1981), inflammation (Cohn 1975; Haverman and Janoff 1978), and tissue remodeling (Werb 1993). Additionally, proteases contribute to a variety of pathological conditions such as tumor dissemination (Testa and Quigley 1990) and a variety of degenerative connective tissue diseases (Perlmutter and Pierce 1989). Proteases, whether of endogenous or of exogenous origin, have the potential for serious destructive effects on the surrounding tissues after their release into the tissue spaces. A variety of connective tissue disorders are directly traceable to the activities of proteases present in the wrong places and at the wrong times. Additionally, proteases are important agents facilitating the invasion of parasites (McKerrow et al. 1991; Breton et al. 1992). In response to this, higher animals have evolved a variety of protease inhibitors in the blood that limit the activities of the proteases of endogenous immune processes and the exogenous proteases of microbes and multicellular parasites. Circulating protease inhibitors are of two basic types; inhibitors that complex with and inhibit the active site of the target protease (Laskowski and Kato 1980; Travis and Salvesen 1983) and inhibitors of the α2-macroglobulin family, which leave the active site intact and instead enfold the target protease to block its interaction with protein substrates (Starkey and Barrett 1977). Proteases bound to α2-macroglobulin retain the ability to hydrolyze small amide and ester substrates (Barrett and Starkey 1973) but have lost the ability to hydrolyze proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aketagawa J, Miyata T, Ohtsubo S, Nakamura T, Morita T, Hayashi H, Miyata T, Iwanatga S, Takao T, Shimonishi Y (1986) Primary structure of Limulus anticoagulant anti-lipopolysaccharide factor. J Biol Chem 261: 7357–7365

    PubMed  CAS  Google Scholar 

  • Amatayakul-Chantler S, Dwek RA, Tennent GA, Pepys MB, Rademacher TW (1993) Molecular characterization of Limulus polyphemus C-reactive protein. 1. Subunit composition. Eur J Biochem 214: 91–97

    Google Scholar 

  • Armstrong PB (1985a) Adhesion and motility of the blood cells of Limulus. In: Cohen WD (ed) Blood cells of marine invertebrates. AR Liss, New York, pp 77–124

    Google Scholar 

  • Armstrong PB (1985b) Amebocytes of the American “horseshoe crab” Limulus polyphemus. In: Cohen WD (ed) Blood cells of marine invertebrates. AR Liss, New York, pp 253–258

    Google Scholar 

  • Armstrong PB (1991) Cellular and humoral immunity in the horseshoe crab, Limulus. In: Gupta AP (ed) Immunology of insects and other arthropods. CRC Press, Boca Raton, pp 1–17

    Google Scholar 

  • Armstrong PB, Quigley JP (1985) Proteinase inhibitory activity released from the horseshoe crab blood cell during exocytosis. Biochim Biophys Acta 827: 453–459

    PubMed  CAS  Google Scholar 

  • Armstrong PB, Quigley JP (1987) Limulus a2-macroglobulin. First evidence in an invertebrate for a protein containing an internal thiol ester bond. Biochem J 248: 703–707

    PubMed  CAS  Google Scholar 

  • Armstrong PB, Quigley JP (1991) α2-Macroglobulin: a recently discovered defense system in arthropods, In: Gupta AP (ed) Immunology of insects and other arthropods. CRC Press, Boca Raton, pp 291–310

    Google Scholar 

  • Armstrong PB, Quigley JP (1992) Humoral immunity: a2-macroglobulin activity in the plasma of mollusks. Veliger 35: 161–164

    Google Scholar 

  • Armstrong PB, Rickles FR (1982) Endotoxin-induced degranulation of the Limulus amebocyte. Exp Cell Res 140: 15–24

    PubMed  CAS  Google Scholar 

  • Armstrong PB, Levin J, Quigley JP (1984) Role of endogenous proteinase inhibitors in the regulation of the blood clotting system of the horseshoe crab, Limulus polyphemus. Thromb Haemostasis (Stuttgart) 52: 117–120

    CAS  Google Scholar 

  • Armstrong PB, Rossner MT, Quigley JP (1985) An a9-macroglobulin-like activity in the blood of chelicerate and mandibulate arthropods. J Exp Zool 236: 1–9

    PubMed  CAS  Google Scholar 

  • Armstrong PB, Quigley JP, Rickles FR (1990) TheLimulus blood cell contains a?-macroglof>ulin and releases it upon exocytosis. Biol Bull 178: 137–143

    CAS  Google Scholar 

  • Armstrong PB, Mangle WF, Wall JS, Hainfield JF, Van Holde KE, Ikai A, Quigley JP (1991) Structure of Limulus a2-macroglobulin. J Biol Chem 266: 2526–2530

    PubMed  CAS  Google Scholar 

  • Armstrong PB, Armstrong MT, Quigley JP (1993a) Characterization of a complement-like hemolytic system in the arthropod, Limulus polyphemus: involvement of α2-maeroglobulin and C-reactive protein. Mol Immunol 30: 929–934

    PubMed  CAS  Google Scholar 

  • Armstrong PB, Selzer PM, Ahlborg N, Morehead K, Perregaux M, Komuniecki P, Komuniecki R, Srimal S, Hotez PJ (1993b) Identification and partial characterization of an extracorporeal protease activity secreted by the triclad turbellarid worm, Bdelloura Candida. Biol Bull 185: 326

    Google Scholar 

  • Barrett AJ, Starkey PM (1973) The interaction of α2-macroglobulin with proteinases. Characteristics and specificity of the reaction and a hypothesis concerning its molecular mechanism. Biochem J 133: 709–724

    PubMed  CAS  Google Scholar 

  • Barrett AJ, Brown MA, Sayers CA (1979) The electrophoretically “slow” and “fast” forms of the <x,-macroglobulin molecule. Biochem J 181: 401–418

    PubMed  CAS  Google Scholar 

  • Beith J, Pichoir M, Metais P (1970) The influence of a7-macroglobulin on the elastolytic and esterolytic activity of elastase. FEBS Lett 8: 319–32

    Google Scholar 

  • Bertheussen K (1982) Receptors for complement on echinoid phagocytes II. Purified human complement mediates echinoid phagocytosis. Dev Comp Immunol 6: 635–642

    PubMed  CAS  Google Scholar 

  • Bertheussen K (1983) Complement-like activity in sea urchin coelomic fluid. Dev Comp Immunol 7: 637–640

    Google Scholar 

  • Bjork I, Fish WW (1982) Evidence for similar conformational changes in a2-macroglobulin on reaction with primary amines or proteolytic enzymes. Biochem J 207: 347–356

    PubMed  CAS  Google Scholar 

  • Borth W (1992) α2-Macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J 6: 3345–3353

    PubMed  CAS  Google Scholar 

  • Borth W, Luger TA (1989) Identification of a2-macroglobulin as a cytokine binding plasma protein. Binding of interleukin-l/β to “F” a2-macroglobulin. J Biol Chem 264: 5818–5825

    PubMed  CAS  Google Scholar 

  • Borth W, Dunky A, Viehberger G (1983) a7-Macroglobulm in joint disease. Ann NY Acad Sci 421: 377–381

    PubMed  CAS  Google Scholar 

  • Boyde TRC, Pryme IF (1968) Alpha2-macroglobulin binding of trypsin, chymotrypsin, papain, and cationic aspartate aminotransferase. Clin Chim Acta 21: 9–14

    PubMed  CAS  Google Scholar 

  • Brandin ER, Pistole TG (1983) Polyphemin: a teichoic acid-binding lectin from the horseshoe crab, Limulus polyphemus. Biochem Biophys Res Commun 113: 611–617

    PubMed  CAS  Google Scholar 

  • Brandin ER, Pistole TG (1985) Presence of microorganisms in the hemolymph of the horseshoe crab, Limulus polyphemus. Appl Environ Microbiol 49: 718–720

    PubMed  CAS  Google Scholar 

  • Breton CB, Blisnick T, Jouin H, Barale JC, Rabilloud T, Langsley, G, Pereira da Silva LH (1992) Plasmodium chabaudip 6% serine protease activity required for merozoite entry into mouse erythrocytes. Proc Natl Acad Sci USA 89: 9647–9651

    PubMed  CAS  Google Scholar 

  • Canicatti C, Cuilla D (1987) Studies onHolothuria polii (Echinodermata) coelomocyte lysate I. Hemolytic activity of coelomocyte hemolysins. Dev Comp Immunol 11: 705–712

    PubMed  CAS  Google Scholar 

  • Canicatti C, Cuilla D (1988) Studies onHolothuria polii (Echinodermata) coelomocyte lysate II. Isolation of coelomocyte hemolysins. Dev Comp Immunol 12: 55–64

    PubMed  CAS  Google Scholar 

  • Cenini P (1983) Comparative studies on hemagglutinins and hemolysins in an annelid and a primitive crustacean. Dev Comp Immunol 7: 637–640

    CAS  Google Scholar 

  • Chase T, Shaw E (1970) Titration of trypsin, plasmin, and thrombin with p-nitrophenyl p’-gua-nidinobenzoate HC1. Methods Enzymol 19: 20–27

    Google Scholar 

  • Chen BJ, Wang D, Yuan AI, Feinman RD (1992) Structure of a9-macroglobulin-protease complexes. Methylamine competition shows that proteases bridge two disulfide-bonded half molecules. Biochemistry 31: 8960–8966

    PubMed  CAS  Google Scholar 

  • Christensen U, Simonsen M, Harritt N, Sottrup-Jensen L (1989) Pregnancy zone protein, a proteinase-binding macroglobulin. Interactions with proteinases and methylamine. Biochemistry 28: 9324–9331

    PubMed  CAS  Google Scholar 

  • Cohen E, Vasta GR, Korytnyk W, Petrie CR, Sharma M (1984) Lectins of the Limulidae and hemagglutination-inhibition by sialic acid analogs and derivatives. Prog Clin Biol Res 157: 55–69

    PubMed  CAS  Google Scholar 

  • Cohn Z (1975) The role of proteases in macrophage physiology. In: Reich E, Rifkin DB, Shaw E (eds) Proteases and biological control. Cold Spring Harbor Conf on Cell proliferation, vol 2. Cold Spring Harbor Press, Cold Spring Harbor, pp 483–893

    Google Scholar 

  • Davidsen O, Christensen EI, Gliemann J (1985) The plasma clearance of human α2-macroglobulin- trypsin complexes in the rat is mainly accounted for by uptake into hepatocytes. Biochim Biophys Acta 846: 85–92

    PubMed  CAS  Google Scholar 

  • Day NKB, Gewurz H, Johannsen R, Finstad J, Good RA (1970) Complement and complement-like activity in lower vertebrates and invertebrates. J Exp Med 132: 941–950

    PubMed  CAS  Google Scholar 

  • Day N, Geiger H, Finstad J, Good RA (1972) A starfish hemolymph factor which activates vertebrate complement in the presence of a cobra venom factor. J Immunol 109: 164–167

    PubMed  CAS  Google Scholar 

  • D’Cruz OJ (1991) Identification and characterization of insect hemolymph proteins interacting with the mammalian complement cascade. In: Gupta PA (ed) Immunology of insects and other arthropods. CRC Press, Boca Raton, pp 372–384

    Google Scholar 

  • Debanne MT, Bell R, Dolovich J (1975) Uptake of protease-a-macroglobulin complexes by macrophages. Biochem Biophys Acta 411: 295–304

    PubMed  CAS  Google Scholar 

  • Devriendt K, Van den Berghe H, Cassiman J-J, Marynen P (1991) Primary structure of pregnancy zone protein. Molecular cloning of a full-length PZP cDNA clone by the polymerase chain reaction. Biochim Biophys Acta 1088: 95–103

    PubMed  CAS  Google Scholar 

  • Dodds AW, Day AJ (1993) The phylogeny and evolution of the complement system. In: Whaley K, Loos M, Weiler JM (eds) Complement in health and disease, 2nd edn. Kluwer Dordrecht, pp 39–88

    Google Scholar 

  • Donovan MA, Laue TM (1991) A novel trypsin inhibitor from the hemolymph of the horseshoe crab Limulus polyphemus. J Biol Chem 266: 2121–2125

    PubMed  CAS  Google Scholar 

  • Enghild JJ, Salvesen G, Thogersen IB, Pizzo SV (1989a) Proteinase-binding and inhibition by the monomeric a-macroglobulin rat aj-inhibitor-3. J Biol Chem 264: 11428–11435

    PubMed  CAS  Google Scholar 

  • Enghild JI, Thogersen IB, Roche PA, Pizzo SV (1989b) A conserved region in a-macroglobulins participates in binding to the mammalian a-macroglobulin receptor. Biochemistry 28:1406–1412

    PubMed  CAS  Google Scholar 

  • Enghild JJ, Salvesen G, Brew K, Nagase H (1989c) Interaction of human rheumatoid synovial collagenase (matrix metalloproteinase 1) and stromolysin (matrix metalloproteinase 3) with human a2-macroglobulin and chicken ovostatin. Binding kinetics and identification of matrix metalloproteinase cleavage sites. J Biol Chem 264: 8779–8785

    PubMed  CAS  Google Scholar 

  • Enghild J J, Thogersen IB, Salvesen G, Fey GH, Figler NL, Gonias SL, Pizzo SV (1990) α-Macroglobulin from Limulus polyphemus exhibits proteinase inhibitory activity and participates in a hemolytic system. Biochemistry 29: 10070–10080

    PubMed  CAS  Google Scholar 

  • Farries TC, Atkinson JP (1991) Evolution of the complement system. Immunol Today 12: 295–300

    PubMed  CAS  Google Scholar 

  • Feldman SR, Pizzo SV (1984) Comparison of the binding of chicken α2-macroglobulin and ovomacro-globulin to the mammalian a2-macroglobulin receptor. Arch Biochem Biophys 235: 267–275

    PubMed  CAS  Google Scholar 

  • Finstad CL, Good RA, Litman GW (1974) The erythrocyte agglutinin from Limulus polyphemus hemolymph: molecular structure and biological function. Ann NY Acad Sci 234: 170–182

    PubMed  CAS  Google Scholar 

  • Furie B, Furie BC (1992) Molecular and cellular biology of blood coagulation. N Engl J Med 326: 800–806

    PubMed  CAS  Google Scholar 

  • Furman RM, Pistole TG (1976) Bactericidal activity of hemolymph from the horseshoe crab, Limulus polyphemus. J Invertebr Pathol 28: 239–244

    PubMed  CAS  Google Scholar 

  • Gilbride KJ, Pistole TG (1979) Isolation and characterization of a bacterial agglutinin in the serum of Limulus polyphemus. Prog Clin Biol Sci 29: 525–535

    CAS  Google Scholar 

  • Gliemann J, Larsen TR, Sottrup-Jensen L (1983) Cell association and degradation of a7-macroglobulin-trypsin complexes in hepatocytes and adipocytes. Biochim Biophys Acta 756: 230–237

    PubMed  CAS  Google Scholar 

  • Gonias SL (1992) α2-maeroglobulin: a protein at the interface of fibrinolysis and cellular growth regulation. Ex Hematol 20: 302–311

    CAS  Google Scholar 

  • Gonias SL, Reynolds JA, Pizzo SV (1982) Physical properties of human a2-macroglobulin following reaction with methylamine and trypsin. Biochim Biophys Acta 705: 306–314

    PubMed  CAS  Google Scholar 

  • Greenberg CS, Birckbichler PJ, Rice RH (1991) Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J 5: 3071–3077

    PubMed  CAS  Google Scholar 

  • Groff JM, Leibovitz L (1982) A gill disease of Limulus polyphemus associated with triclad turbellarid worm infection. Biol Bull 163: 392

    Google Scholar 

  • Hall M, Soderhall K, Sottrup-Jensen L (1989) Amino acid sequence around the thiolester of a7-macroglobulin from plasma of the crayfish, Pacifastacus leniusculus. FEBS Lett 254: 111–114

    PubMed  CAS  Google Scholar 

  • Hall PK, Roberts RC (1978) Physical and chemical properties of human plasma a2-macroglobulin. Biochem J 173: 27–38

    PubMed  CAS  Google Scholar 

  • Harpel PC (1973) Studies on human plasma a2-macroglobulin-enzyme interactions. Evidence for proteolytic modification of the subunit chain structure. J Exp Med 138: 508–521

    PubMed  CAS  Google Scholar 

  • Harpel PC, Hayes MB, Hugli TE (1979) Heat-induced fragmentation of human α2-macroglobulin. J Biol Chem 254: 8669–8678

    PubMed  CAS  Google Scholar 

  • Havermann K, Janoff A (1978) Neutral proteases of human polymorphonuclear leukocytes. Urbran and Schwarzenberg, Baltimore, MD

    Google Scholar 

  • Hergenhahn H-G, Söderhäll K (1985) a9-Macroglobulin-like activity in plasma of the crayfish Pacifastacus leniusculus. Comp Biochem Physiol 8IB: 833–835

    Google Scholar 

  • Hergenhahn HG, Aspan A, Söderhäll K (1987) Purification and characterization of a high-Mr proteinase inhibitor of prophenoloxidase activation from crayfish plasma. Biochem J 248:223–228

    PubMed  CAS  Google Scholar 

  • Hergenhan HG, Hall M, Söderhäll K (1988) Purification and characterization of an or7-macroglobulin-like proteinase inhibitor from plasma of the crayfish Pacifastacus leniusculus. Biochem J 255: 801–806

    Google Scholar 

  • Holme R, Solum NO (1973) Electron microscopy of the gel protein formed by clotting of Limulus polyphemus hemocyte extracts. J Ultrastruct Res 44: 329–338

    PubMed  CAS  Google Scholar 

  • Howard FJB (1983) Reactive centers in a2-maeroglobulin. Ann NY Acad Sci 421: 69–80

    PubMed  CAS  Google Scholar 

  • Huang JS, Huang SS, Deuel TF (1984) Specific covalent binding of platelet derived growth factor to human plasma α2-macroglobulin. Proc Natl Acad Sci USA 81: 342–347

    PubMed  CAS  Google Scholar 

  • Huggins LG, Waite JH (1993) Eggshell formation in Bdelloura candida, an ectoparasitic turbellarian of the horseshoe crab Limulus polyphemus. J Exp Zool 265: 549–557

    PubMed  CAS  Google Scholar 

  • Hussain MM, Maxfield FR, Más-Oliva J, Tabas I, Ji Z-S, Innerarity TL, Mahley RW (1991) Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/α2-macroglobulin receptor. J Biol Chem 266: 13936–13940

    PubMed  CAS  Google Scholar 

  • Ikai A, Ditamoto T, Nishigai M (1983) Alpha-2-macroglobulin-like protease inhibitor from the egg white of Cuban crocodile (Crocodylas rhombifer). J Biochem (Tokyo) 93: 121–127

    PubMed  CAS  Google Scholar 

  • Ikai A, Kiruchi M, Nishigai M (1990) Interval structure of ovomacroglobulin studied by electron microscopy. J Biol Chem 265: 8280–8284

    PubMed  CAS  Google Scholar 

  • Iwanaga S, Miyata T, Tokunaga F, Muta T (1992) Molecular mechanism of hemolymph clotting system inLimulus. Thromb Res 68: 1–32

    PubMed  CAS  Google Scholar 

  • James K (1990) Interactions between cytokines and a2-macroglobulin. Immunol Today 11: 163–167

    PubMed  CAS  Google Scholar 

  • Jiang H, Siegel JN, Gewürz H (1991) Binding and complement activation by C-reactive protein via the collagen-like region of Clq and inhibition of these reactions by monoclonal antibodies to C-reactive protein and Clq. J Immunol 146: 2324–2330

    PubMed  CAS  Google Scholar 

  • Johannsen R, Anderson RS, Good RA, Day NK (1973) A comparative study of the bactericidal activity of horseshoe crab (Limulus polyphemus) hemolymph and vertebrate serum. I Jnvertebr Pathol 22: 372–376

    CAS  Google Scholar 

  • Kaplan R, Li SSL, Kehoe JM (1977) Molecular characterization of Limulin, a sialic acid binding lectin from the hemolymph of the horseshoe crab, Limulus polyphemus. Biochemistry 16: 4297–4303

    PubMed  CAS  Google Scholar 

  • Kawano K, Yoneya T, Miyata T, Yoshikawa K, Tokunaga F, Terada Y, Iwanaga S (1990) Antimicrobial peptide, Tachyplesin I, isolated from hemocytes of the horseshoe crab (Tachypleus tridentatus). J Biol Chem 265: 15365–15367

    PubMed  CAS  Google Scholar 

  • Kehoe JM, Scide RK (1986) Comparative structural studies of limulin. In: Gupta AP (ed) Hemocytic and humoral immunity in arthropods. Wiley, New York, pp 345–358

    Google Scholar 

  • Kitano T, Nakashima M, Ikai A (1982) Hen egg white ovomacroglobulin has a protease inhibitory activity. J Biochem 92: 1679–1682

    Google Scholar 

  • Komano H, Natori S (1985) Participation of Sarcophagaperegrina humoral lectin in the lysis of sheepred blood cells injected into the adbominal cavity of larvae. Dev Comp Immunol 9: 31–40

    PubMed  CAS  Google Scholar 

  • Kristensen T, Moestrup SK, Gliemann J, Bendtsen L, Sand O, Sottrup-Jensen L (1990) Evidence that the newly cloned low-density-lipoprotein receptor-related protein (LRP) is the α-macroglobulin receptor. FEBS Lett 276: 151–155

    PubMed  CAS  Google Scholar 

  • Laskowski M, Kato I (1980) Protein inhibitors of proteases. Annu Rev Biochem 49: 593–626

    PubMed  CAS  Google Scholar 

  • Law SK, Levine RP (1977) Interaction between the third complement protefii and cell surface maeromolecules. Proc Natl Acad Sci USA 74: 2701–2705

    PubMed  CAS  Google Scholar 

  • Law SK, Reid KBM (1988) Complement. IRL Press, Oxford, 72 pp

    Google Scholar 

  • Liang Z, Lindblad P, Beauvais A, Johansson MW, Latage J-P, Hall M, Cerenius L, Söderhäll K (1992) Crayfish a7-macroglobulin and 76 kDa protein; their biosynthesis and subcellular localization of the 76 kDa protein. J Insect Physiol 38: 987–995

    CAS  Google Scholar 

  • Marchalonjs J J, Edelman GM (1968) Isolation and characterization of a hemagglutinin from Limulus polyphemus. J Mol Biol 32: 453–465

    Google Scholar 

  • McKerrow JH, Newport G, Fishelson Z (1991) Recent insights into the structure and function of a larval proteinase involved in host infection by a multicellular parasite. Proc Soc Exp Biol Med 197: 119–124

    PubMed  CAS  Google Scholar 

  • McKerrow JH, Sun E, Rosenthal PJ, Bouvier J (1993) The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol 47: 821–853

    PubMed  CAS  Google Scholar 

  • McPherson TA, Marchalonis J J, Lennon V (1970) Binding of encephalitogenic basic protein by serum cr-globulins. Immunology 19: 929–933

    PubMed  CAS  Google Scholar 

  • Miyata T, Hiranga M, Umezu M, Iwanaga S (1984) Amino acid sequence of the coagulogen from Limulus polyphemus hemocytes. J Biol Chem 259: 8924–8933

    PubMed  CAS  Google Scholar 

  • Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M, Takao T, Shimonishi Y (1989) Antimicrobial peptides isolated from horseshoe crab hemocytes, Tachyplesin II, and Polyphemusins I and II: chemical structures and biological activity. J Biochem 106: 663–668

    PubMed  CAS  Google Scholar 

  • Miyazawa K, Inoue K (1990) Complement activation induced by human C-reactive protein in mildly acidic conditions. J Immunol 145: 650–65

    PubMed  CAS  Google Scholar 

  • Moestrup SK, Holtet TL, Etzerodt M, Thogersen HC, Nykjaer A, Andreasen PA, Rasmussen HH, Sottrup-Jensen L, Gliemann J (1993) a2-Macroglobulin-proteinase complexes, plasminogen activator inhibitor type-1 plasminogen activator complexes, and receptor-associated protein bind to a region of the a2-macroglobulin receptor containing a cluster of eight complement-type repeats. J Biol Chem 268: 13691–13696

    PubMed  CAS  Google Scholar 

  • Morita T, Ohtsubo S, Nakamura T, Tanaka S, Iwanaga S, Ohashi K, Niwa M (1985) Isolation and biological activities of Limulus anticoagulant (anti-LPS factor) which interacts with lipopoly-saccharide (LPS). J Biochem 97: 1611–1620

    PubMed  CAS  Google Scholar 

  • Morrison DC, Ryan JL (1987) Endotoxins and disease mechanisms. Annu Rev Med 38: 417–432

    PubMed  CAS  Google Scholar 

  • Mosesson MW, Wolfenstein-Todd C, Levin J, Bertrand O (1979) Characterization of amebocyte coagulogen from the horseshoe crab Limulus polyphemus. Thromb Res 14: 765–779

    PubMed  CAS  Google Scholar 

  • Mürer EH, Levin J, Holme R (1975) Isolation and studies of the granules of the amebocytes of Limulus polyphemus, the horseshoe crab. J Cell Physiol 86: 533–542

    PubMed  Google Scholar 

  • Muta T, Miyata T, Tokunaga F, Nakamura T, Iwanaga S (1987) Primary structure of anti-lipopoly-saccharide factor from American horseshoe crab, Limulus polyphemus. J Biochem 101: 1321–1330

    PubMed  CAS  Google Scholar 

  • Muta T, Fujimoto T, Nakajima H, Iwanaga S (1990a) Tachyplesins isolated from hemocytes of Southeast Asian horseshoe crabs (Carcinoscorpius rotundicauda) and Tachypleus gigas): identification of a new Tachyplesin, Tachyplesin III, and a processing intermediate of its precursor J Biochem 108: 261–266

    PubMed  CAS  Google Scholar 

  • Muta T, Hashimoto R, Miyata T, Nishimura H, Toh Y, Iwanaga S (1990b) Proclotting enzyme from horseshoe crab hemocytes. cDNA cloning, disulfide locations, and subcellular localization. J Biol Chem 265: 22426–22433

    PubMed  CAS  Google Scholar 

  • Muta T, Miyata T, Misumi T, Tokunaga F, Nakamura T, Toh Y, Ikehara Y, Iwanaga S (1991) Limulus factor C. An endotoxin-sensitive serine protease zymogen with a mosaic structure of complement-like, epidermal growth factor-like, and lectin-like domains. J Biol Chem 266: 6554–6617

    PubMed  CAS  Google Scholar 

  • Muta T, Oda T, Iwanaga S (1993) Horseshoe crab coagulation factor B. A unique serine protease zymogen activated by cleavage of an dlle-Ile bond. J Biol Chem 268: 21384–21388

    PubMed  CAS  Google Scholar 

  • Nachman RL, Harpel PC (1976) Platelet a2-macroglobulin and a x antitrypsin. J Biol Chem 251: 4514–4521

    CAS  Google Scholar 

  • Nachum R (1979) Antimicrobial defense mechanisms in Limulus polyphemus. Prog Clin Biol Res 29: 513–524

    PubMed  CAS  Google Scholar 

  • Nachum R, Watson SR, Sullivan JD, Siegel SE (1979) Antimicrobial defense mechanisms in the horseshoe crab, Limulus polyphemus: Preliminary observations with heat-derived extracts of Limulus amebocyte lysate. J Invertebr Pathol 33: 290–299

    PubMed  CAS  Google Scholar 

  • Nachum R, Watson SW, Siegel SE (1980) Antimicrobial defense mechanisms in the horseshoe crab, Limulus polyphemus: effect of sodium chloride on bactericidal activity. J Invertebr Pathol 36: 382–388

    Google Scholar 

  • Nagase H, Harris ED (1983) Ovostatin: a novel proteinase inhibitor from chicken egg white II. Mechanism of inhibition studied with collagenase and thermolysin. J Biol Chem 258: 7490–7498

    PubMed  CAS  Google Scholar 

  • Nagase J, Harris ED, Woessner JF, Brew K (1983) Ovostatin: a novel proteinase inhibitor from chicken egg white I. Purification, physicochemical properties and tissue distribution of ovostatin. J Biol Chem 258: 7481–7489

    PubMed  CAS  Google Scholar 

  • Nakamura T, Morita T, Iwanaga S (1985) Intracellular proclotting enzyme in Limulus (Tachypleus tridentatus) hemocytes: its purification and properties. J Biochem 97: 1561–1574

    PubMed  CAS  Google Scholar 

  • Nakamura T, Morita T, Iwanaga S (1986) Lipopolysaccharide-sensitive serine-protease zymogen (factor C) found in Limulus lysates. Eur J Biochem 154: 511–521

    PubMed  CAS  Google Scholar 

  • Nakamura T, Hirai T, Tokunaga F, Kawabata S, Iwanaga S (1987) Purification and amino acid sequence of Kunitz-type protease inhibitor found in the hemocytes of the horseshoe crab (Tachypleus tridentatus). J Biochem 101: 1297–1306

    PubMed  CAS  Google Scholar 

  • Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, Niwa M, Takao T, Shimonishi T (1988) Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab, (Tachypleus tridentatus). J Biol Chem 263: 16709–16713

    PubMed  CAS  Google Scholar 

  • Nielsen K, Sottrup-Jensen L (1993) Evidence from sequence analysis that hen egg white ovomacroglobulin (ovostatin) is devoid of an internal β-Cys-γ-Glu thiol ester. Biochem Biophys Acta 1162: 230–232

    PubMed  CAS  Google Scholar 

  • Nguygen NY, Suzuki A, Cheng S-M, Zon G, Liu T-Y (1986a) Isolation and characterization of Limulus C-reactive protein genes. J Biol Chem 261: 10450–10455

    Google Scholar 

  • Nguyen NY, Suzuki A, Boykins A, Liu TY (1986b) The amino acid sequence of Limulus C-reactive protein. Evidence of polymorphism. J Biol Chem 261: 10456–10459

    PubMed  CAS  Google Scholar 

  • Noguchi H (1903) A study of immunization - haemolysins, agglutinins, precipitins, and coagulins in cold-blooded animals. Zentralbel Bakteriol Parasitenkd Infektektionskr 33: 353–362

    Google Scholar 

  • Nykjaer A, Bengtsson-Olivecrona G, Lookene A, Moestrup SK, Petersen CM, Weber W, Beisiegel U, Gliemann J (1993) The α2 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds lipoprotein lipase and β-migrating very low density lipoprotein associated with the lipase. J Biol Chem 268: 15048–15055

    PubMed  CAS  Google Scholar 

  • O’Connor-Court MD, Wakefield LM (1987) Latent transforming growth factor-/? in serum. J Biol Chem 262: 14090–14099

    Google Scholar 

  • Ogata H, Kouyoumdjian M, Borges DR (1993) Comparison between clearance rates of plasma kallikrein and of plasma kallikrein-a2-macroglobulin complexes by the liver. Int J Biochem 25: 1047–1051

    PubMed  CAS  Google Scholar 

  • Ohashi D, Niwa M, Nakamura T, Morita T, Iwanaga S (1984) Anti-LPS factor in the horseshoe crab, Tachypleus tridentatus. Its hemolytic activity of the red blood cell sensitized with lipopoly-saecharide. FEBS Lett 176: 207–210

    PubMed  CAS  Google Scholar 

  • Ohlsson K (1971) Elimination of [125I]-trypsin a2-macroglobulin complexes from blood by the reticuloendothelial cells in dog. Acta Physiol Scand 81: 269–272

    PubMed  CAS  Google Scholar 

  • Osada T, Nishigai M, Ikai A (1986) Open quaternary structure of the hagfish proteinase inhibitor with similar properties to human a2-macroglobulin. J Ultrastruet Mol Struct Res 96: 136–145

    CAS  Google Scholar 

  • Perlmutter DH, Pierce J A (1989) The a x -antitrypsin gene and emphysema. Am J Physiol 257: L147-L162

    PubMed  CAS  Google Scholar 

  • Peterson CGB, Venge P (1987) Interaction and complex-formation between the eosinophil cationic protein and a2-macroglobulin. Biochem J 245: 781–787

    PubMed  CAS  Google Scholar 

  • Phipps DJ, Chadwick JS, Leeder RG, Aston WP (1989) The hemolytic activity of Gasseria mellonella hemolymph. Dev Comp Immunol 13: 103–111

    PubMed  CAS  Google Scholar 

  • Pistole TG (1982) Limulus lectins: Analogues of vertebrate immunoglobins. Prog Clin Biol Res 81: 283–288

    PubMed  CAS  Google Scholar 

  • Pistole TG, Britko JL (1978) Bactericidal activity of amebocytes from the horseshoe crab, Limidus polyphemus. J Invertebr Pathol 31: 376–382

    PubMed  CAS  Google Scholar 

  • Pistole TG, Graf SA (1986) Antibacterial activity in Limulus. In: Gupta AP (ed) Hemocytic and humoral immunity in arthropods. Wiley, New York, pp 331–344

    Google Scholar 

  • Plow EF, Collen D (1981) The presence and release of a2-antiplasmin from human platelets. Blood 58: 1069–1074

    PubMed  CAS  Google Scholar 

  • Quigley JP, Armstrong PB (1983) An endopeptidase inhibitor, similar to mammalian er2-macroglobulin, detected in the hemolymph of an invertebrate, Limulus polyphemus. J Biol Chem 258: 7903–7906

    PubMed  CAS  Google Scholar 

  • Quigley JP, Armstrong PB (1985) A homologue of <x,-macroglobulin purified from the hemolymph of the horseshoe crab Limulus. J Biol Chem 260: 12715–12719

    PubMed  CAS  Google Scholar 

  • Quigley JP, Armstrong PB, Gallant P, Rickles FR, Troll W (1982) An endopeptidase inhibitor, similar to vertebrate 2 macroglobulin, present in the plasma of Limulus polyphemus. Biol Bull 163: 402

    Google Scholar 

  • Quigley JP, Ikai A, Arakawa H, Osada T, Armstrong PB (1991) Reaction of proteinases with a 2 - macroglobulin from the American horseshoe crab, Limulus. J Biol Chem 266: 19426–19431

    PubMed  CAS  Google Scholar 

  • Reid KBM, Porter RR (1981) The proteolytic activation systems of complement. Annu Rev Biochem 50: 433–464

    PubMed  CAS  Google Scholar 

  • Robey FA, Liu T-Y (1981) Limulin: a C-reactive protein from Limulus polyphemus. J Biol Chem 256: 969–975

    PubMed  CAS  Google Scholar 

  • Roch P, Canicatti C, Valembois P (1989) Interactions between earthworm hemolysins and sheep red blood cell membranes. Biochim Biophys Acta 983: 193–198

    PubMed  CAS  Google Scholar 

  • Ropes JW (1961) Longevity of the horseshoe crab, Limulus polyphemus. Trans Am Fish Soc 90:79–80

    Google Scholar 

  • Roth RI, Levin J (1992) Purification of Limulus polyphemus proclotting enzyme. J Biol Chem 267: 24097–24102

    PubMed  CAS  Google Scholar 

  • Rubenstein DS, Enghild JJ, Pizzo SV (1991) Limited proteolysis of the a-maeroglobulin rata x - inhibitor-3. Implications for a domain structure. J Biol Chem 266: 11252–11261

    PubMed  CAS  Google Scholar 

  • Rubenstein DS, Thogersen IB, Pizzo SV, Enghild J J (1992) Identification of monomelic α-macroglobulin proteinase inhibitors in birds, reptiles, amphibians and mammals, and purification and characterization of a monomeric a-macroglobulin proteinase inhibitor from the American bullfrog Rana catesbeiana. Biochem J 290: 85–95

    Google Scholar 

  • Rudloe J (1971) The Erotic Ocean. Crowell, New York, pp 183–185

    Google Scholar 

  • Runnegar B (1982) The Cambrian explosion: animals or fossils? J Geol Soc Aust 29: 395–411

    Google Scholar 

  • Salvesen GS, Sayers CA, Barrett A J (1981) Further characterization of the covalent linking reaction of a2-macroglobulin. Biochem J 195: 453–461

    PubMed  CAS  Google Scholar 

  • Santambrogio P, Massover WH (1989) Rabbit serum alpha-2-macroglobulin binds to liver ferritin: association causes a heterogeneity of ferritin molecules. Brit J Haematol 71: 281–290

    CAS  Google Scholar 

  • Sepkoski J J (1978) A kinetic model of phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4: 223–251

    Google Scholar 

  • Shirodkar MV, Warwick A, Bang FB (1960) The in vitro reaction ofLimulus amebocytes of bacteria. Biol Bull 118: 324–337

    Google Scholar 

  • Shuster CN (1950) Observations on the natural history of the American horseshoe crab, Limulus polyphemus. Woods Hole Oceanogr Inst Contr 564: 18–23

    Google Scholar 

  • Shuster CN (1954) A horseshoe “crab” grows up. Ward’s Nat Sci Bull (Rochester, NY) 28: 3–6

    Google Scholar 

  • Smith RH, Pistole TG (1985) Bactericidal activity of granules isolated from amebocytes of the horseshoe crab, Limulus polyphemus. J Invertebr Pathol 45: 272–275

    PubMed  CAS  Google Scholar 

  • Scully MF (1992) The biochemistry of blood clotting: the digestion of a liquid to form a solid. Essays Biochem 27: 17–36

    PubMed  CAS  Google Scholar 

  • Sottrup-Jensen L (1987) ar2-Maeroglobulin and related thiol ester plasma proteins. In: Putnam FW (ed) The plasma proteins. Structure, function, and genetic control, 2nd edn, vol 5. Academic Press, Orlando, pp 191–291

    Google Scholar 

  • Sottrup-Jensen L (1989) a2-Macroglobulin: structure, shape, and mechanism of proteinase complex formation. J Biol Chem 264: 11539–11542

    PubMed  CAS  Google Scholar 

  • Sottrup-Jensen L, Lonblad PB, Stephanik TM, Petersen TE, Magnusson S, Jornvall H (1981) Primary structure of the “bait” region for proteinases in a2-macroglobulin. Nature of the complex. FEBS Lett 127: 167–173

    PubMed  CAS  Google Scholar 

  • Sottrup-Jensen L, Stepanik TM, Wierzbicki DM, Jones CM, Lonblad PB, Kristensen T, Mortensen SB, Petersen TE, Magnusson S (1983) The primary structure of a2-macroglobulin and localization of a factor XHIa cross-linking site. Ann NY Acad Sci 421: 41–60

    PubMed  CAS  Google Scholar 

  • Sottrup-Jensen L, Stepanik TM, Kristensen T, Wierzbicki DM, Jones CM, Lonblad PB, Magnusson S, Petersen TE (1984) Primary structure of human a2-macroglobulin V. The complete structure. J Biol Chem 259: 8318–8327

    PubMed  CAS  Google Scholar 

  • Sottrup-Jensen L, Sand O, Dristensen L, Fey GH (1989) The α9-macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian a-,-macroglobulin. J Biol Chem 264: 15781–15789

    PubMed  CAS  Google Scholar 

  • Sottrup-Jensen L, Borth W, Hall M, Quigley JP, Armstrong PB (1990a) Sequence similarity between α2-macroglobulin from the horseshoe crab, Limulus polyphemus, and proteins of the α2-macroglobulin family from mammals. Comp Biochem Physiol 96B: 621–625

    CAS  Google Scholar 

  • Sottrup-Jensen L, Hansen JF, Pedersen HS, Kristensen L (1990b) Localization of lysyl-γ-glutamyl cross-links in five human a7-macroglobulin-proteinase complexes. Nature of the high molecular weight cross-linked products. J Biol Chem 265: 17727–17737

    PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB (1990) Peptide growth factors, vols I, II. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Spycher SE, Arya S, Isenman DE, Painter H (1987) A functional thioester-containing a2-macroglobulin homologue isolated from the hemolymph of the American lobster (Homarus americanus). J Biol Chem 262: 14606–14611

    PubMed  CAS  Google Scholar 

  • Srimal S, Quigley JP, Armstrong PB (1993) Limulin and C-reactive protein from the plasma of Limulus polyphemus are different proteins. Biol Bull 185: 325

    Google Scholar 

  • Starkey PM, Barrett AJ (1977) a2-Macroglobulin, a physiological regulator of proteinase activity. In: Barrett AJ (ed) Proteinases in mammalian cells and tissues. Elsevier, Amsterdam, pp 663–696

    Google Scholar 

  • Starkey PM, Barrett AJ (1982) Evolution of a2-macroglobulin. The demonstration in a variety of vertebrate species of a protein resembling human a2-macroglobulin. Biochem J 205: 91–95

    PubMed  CAS  Google Scholar 

  • Stebbins MR, Harper KD (1986) Isolation, characterization and inhibition of arthropod agglutinins. In: Gupta AP (ed) Hemocytic and humoral immunity in arthropods. Wiley, New York, pp 463–491

    Google Scholar 

  • Steinbuch M, Pejaudier L, Quentin M, Martin V (1968) Molecular alteration of a7-macroglobulin by aliphatic amines. Biochim Biophys Acta 154: 228–231

    PubMed  CAS  Google Scholar 

  • Stocker W, Breit S, Sottrup-Jensen L, Zwilling R (1991) a2-Macroglobulin from the haemolymph of the freshwater crayfish Astacus astacus. Comp Biochem Physiol 98B: 501–509

    Google Scholar 

  • Stoller BD, Rezuke W (1978) Separation of anti-histone antibodies from nonimmune histone-precipitating serum proteins, predominantly a2-macroglobulin. Arch Biochem Biophys 190: 398–404

    Google Scholar 

  • Strickland DK, Ashcom JD, Williams S, Burgess WH, Migliorini M, Argraves WA (1990) Sequence identity between the cr2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem 265: 17401–17404

    PubMed  CAS  Google Scholar 

  • Swenson RP, Howard JB (1979) Characterization of alkylamine-sensitive site in er2-macroglobulin. Proc Natl Acad Sci USA 76: 4313–4316

    PubMed  CAS  Google Scholar 

  • Tack BF (1938) The β-Cys-γ-Glu thiolester bond in human C3, C4, and a2-macroglobulin. Springer Semin Immunopathol 6: 259–282

    Google Scholar 

  • Tack BF, Harrison RA, Janatova J, Thomas ML, Prahl JW (1980) Evidence for presence of an internal thiolester bond in third component of human complement. Proc Natl Acad Sci USA 77:5764–5768

    PubMed  CAS  Google Scholar 

  • Tai JY, Liu T-Y (1977) Studies ofLimulus amoebocyte lysate. Isolation of pro-clotting enzyme. J Biol Chem 252: 2178–2181

    PubMed  CAS  Google Scholar 

  • Tai JY, Scid RC, Huhn RD, Liu T-Y (1977) Studies onLimulus amoebocyte lysate II. Purification of the coagulogen and the mechanism of clotting. J Biol Chem 252: 4773–4776

    PubMed  CAS  Google Scholar 

  • Tanaka S, Nakamura T, Morita T, Iwanaga S (1982) Limulus anti-LPS factor, An anticoagulant which inhibits the endotoxin-mediated activation of Limulus coagulation system. Biochem Biophys Res Commun 105: 717–723

    PubMed  CAS  Google Scholar 

  • Tennent GA, Butler PJG, Hutton T, Woolfitt AR, Harvey DJ, Rademacher TW, Pepys MB (1993) Molecular characterization of Limulus polyphemus C-reactive protein. 1. Subunit composition. Eur J Biochem 214: 91–97

    PubMed  CAS  Google Scholar 

  • Testa JE, Quigley JP (1990) The role of urokinase-type plasminogen activator in aggressive tumor cell behavior. Cancer Metast Rev 9: 353–367

    CAS  Google Scholar 

  • Thogersen IB, Salvesen G, Brucato FH, Pizzo SV, Enghild JJ (1992) Purification and characterization of an a2-macroglobulin proteinase inhibitor from the mollusc Octopus vulgaris. Biochem J 285: 521–527

    PubMed  CAS  Google Scholar 

  • Thomsen NK, Sottrup-Jensen L (1993) a2-Macroglobulin domain structure studied by specific limited proteolysis. Arch Biochem Biophys 300: 327–334

    PubMed  CAS  Google Scholar 

  • Tokunaga F, Yamada M, Miyata T, Ding YL, Hiranaga-Kawabata M, Muta T, Iwanaga S, Ichinose A, Davie EW (1993a) Limulus hemocyte transglutaminase. Its purification and characterization, and identification of the intracellular substrates. J Biol Chem 268: 252–261

    PubMed  CAS  Google Scholar 

  • Tokunaga F, Muta T, Iwanaga S, Ichinose A, Davie EW, Kuma K, Miyata T (1993b) Limulus tissue transglutaminase. cDNA cloning, amino acid sequence, and tissue localization. J Biol Chem 268: 262–268

    PubMed  CAS  Google Scholar 

  • Travis J, Salvesen GS (1983) Human plasma proteinase inhibitors. Annu Rev Biochem 52: 655–709

    PubMed  CAS  Google Scholar 

  • Tuckova L, Rejnek J, Sima P, Ondrejova R (1986) Lytic activities in coelomic fluid of Eisenia foetida and Lumbricus terrestries. Dev Comp Immunol 10: 181–189

    PubMed  CAS  Google Scholar 

  • Vaith P, Uhlenbruck G, Müller WEG, Cohen E (1979) Reactivity of Limulus polyphemus hemolymph with D-glucuronic acid containing glycosubstances. Prog Clin Biol Res 29: 579–587

    PubMed  CAS  Google Scholar 

  • Van Dijk MCM, Boers W, Linthorst C, van Berkel TJC (1992) Role of the scavenger receptor in the uptake of methylamine-activated a2-macroglobulin by rat liver. Biochem J 287: 447–455

    PubMed  Google Scholar 

  • Van Leuven F (1984) Human cr2-macroglobulin. Primary amines and the mechanisms of endoprotease inhibition and receptor-mediated endocytosis. Mol Cell Biochem 58: 121–128

    PubMed  Google Scholar 

  • Van Leuven F, Cassiman J-J, Van Den Berghe J (1979) Demonstration of an a2-macroglobulin receptor in human fibroblasts, absent in tumor-derived cell lines. J Biol Chem 254: 5155–5160

    PubMed  Google Scholar 

  • Van Leuven F, Cassiman J-J, Van Den Berghe J (1981) Functional modifications of α2-macroglobulin by primary amines II. Inhibition of covalent binding of trypsin to a0M by methylamine and other primary amines. J Biol Chem 256: 9023–9027

    PubMed  Google Scholar 

  • Volanakis JE (1982) Complement activation by C-reactive protein complexes. Ann NY Acad Sci 389: 235–250

    PubMed  CAS  Google Scholar 

  • Vu T-K, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64: 1057–1068

    PubMed  CAS  Google Scholar 

  • Werb Z (1993) Proteases and matrix degradation. In: Kelley WN, Harris ED, Ruddy S, Sledge CB (eds) Textbook of rheumatology, 4th edn. Saunders, Philadelphia, pp 300–321

    Google Scholar 

  • Wilson J, Rickles FR, Armstrong PB, Lorand L (1992) Nε (γglutamyl) lysine crosslinks in the blood clot of the horseshoe crab, Limulus polyphemus. Biochem Biophys Res Commun 188: 655–661

    PubMed  CAS  Google Scholar 

  • Wu K, Wang D, Feinman RD (1981) Inhibition of proteases by <a2-maeroglobulin. The role of lysyl amino groups of trypsin in covalent complex formation. J Biol Chem 256: 10409–10414

    PubMed  CAS  Google Scholar 

  • Yochem J, Greenwald I (1993) A gene for a low density lipoprotein-related protein in the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 90: 4572–4576

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Armstrong, P.B., Quigley, J.P. (1996). Immune Function α2-Macroglobulin in Invertebrates. In: Rinkevich, B., Müller, W.E.G. (eds) Invertebrate Immunology. Progress in Molecular and Subcellular Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79735-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79735-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79737-8

  • Online ISBN: 978-3-642-79735-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics