Advertisement

Earthworm Immunity

  • E. L. Cooper
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 15)

Abstract

The purpose of this chapter is to draw attention to the mass of information that has accumulated on the earthworm immune system, since about 1963. This work has emanated from several laboratories, primarily those of Cooper (USA), Duprat, Valembois, Roch (France), Bilej, Rejnek, Šima, Tucková, Větvička (Czech Republic), and recently Goven (USA). To my knowledge, these are the laboratories that have been most concerned with major studies of earthworm immunity. Goven’s work represents a unique departure, a “clinical” approach, since he has proposed that earthworms be used as sentinels, and that components of their immune system serve as surrogate biomarkers indicative of changes caused by environmental pollution (Rodriguez-Grau et al. 1989; Fitzpatrick et al. 1990; Chen et al. 1991; Eyambe et al. 1991; Venables et al. 1992; Goven et al. 1993; Goven and Kennedy 1995). This will not be an elaborate review of earthworm immunity nor will it include information on polychaete annelids found in the book by Vetvicka et al. (1994), for this has been done in several recent reviews including another book: Tucková and Bilej (1995); Roch (1995). My purpose will be to present certain areas that, although reviewed earlier, surely require further investigation, since, in my opinion, they are critical subjects.

Keywords

Graft Rejection Immunoglobulin Superfamily Coelomic Fluid Coelomic Cavity Brown Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson RS (1988) Bacteriostatic factor(s) in the coelomie fluid of Lumbricus terrestris. Dev Comp Immunol 12: 189–194PubMedCrossRefGoogle Scholar
  2. Bailey S, Miller BJ, Cooper EL (1971) Transplantation immunity in annelids. II. Adoptive transfer of the xenograft reaction. Immunology 21: 81–86PubMedGoogle Scholar
  3. Bang FB (1973) A survey of phagocytosis as a protective mechanism against disease among invertebrates. In: Braun W, Unger J (eds) Non-specific factors influencing host resistance. Karger, Basel, pp 2–10Google Scholar
  4. Beck G, O’Brien RF, Habicht GS, Stillman DL, Cooper EL, Raftos DA (1993) Invertebrate cytokines. III. Invertebrate interleukin-l-like molecules stimulate phagocytosis by tunicate and echinoderm cells. Cell Immunol 146: 284–299PubMedCrossRefGoogle Scholar
  5. Bilej M, Tuckova L, Rejnek J, Vëtvicka V (1990a) In vitro antigen-binding properties of coelomocytes of Eisenia foetida (Annelida). Immunol Lett 26: 183–188PubMedCrossRefGoogle Scholar
  6. Bilej M, Scheerlinck J-P, VandenDriessehe T, De Baetselier P, Vëtvicka V (1990b) The flow cytometric analysis of in vitro phagocytic activity of earthworm coelomocytesEisenia foetida (Annelida). Cell Biol Int Rep 14: 831–837CrossRefGoogle Scholar
  7. Bilej M, Vëtvicka V, Tuckovâ L, Trebichavsky I, Koukal M, Sima P (1990c) Phagocytosis of synthetic particles in earthworms. Effect of antigenic stimulation and opsonization. Folia Biol (Prague) 36: 273–280Google Scholar
  8. Bilej M, De Baetselier P, Trebichavsky I, Vëtvicka V (1991a) Phagocytosis of synthetic particles in earthworms: Absence of oxidative burst and possible role of lytic enzymes. Folia Biol 37: 227–233Google Scholar
  9. Bilej M, Rossmann P, VandenDriessehe T, Scheerlinck J-P, De Baetselier P, Tuckova L, Vëtvicka V, Rejnek J (1991b) Detection of antigen in the coelomocytes of the earthworm, Eisenia foetida (Annelida). Immunol Lett 29: 241–246PubMedCrossRefGoogle Scholar
  10. Bilej M, Rejnek J, Tuckovâ L (1992a) The interaction of Staphylococcal protein A with free coelomocytes of annelids. Cell Biol Int Rep 16: 481–485PubMedCrossRefGoogle Scholar
  11. Bilej M, Sima P, Slipka J (1992b) Repeated antigenic challenge induces earthworm coelomocyte proliferation. Immunol Lett 32: 181–184PubMedCrossRefGoogle Scholar
  12. Burke JM (1974a) Wound healing in Eisenia foetida (Oligochaeta) I: Histology and 3H-thymidine radiography of the epidermis. J Exp Zool 188: 49–63PubMedCrossRefGoogle Scholar
  13. Burke JM (1974b) Wound healing in Eisenia foetida (Oligochaeta). II. A fine structural study of the role of the epidermis. Cell Tissue Res 154: 61–82PubMedCrossRefGoogle Scholar
  14. Burke JM (1974c) Wound healing in Eisenia foetida (Oligochaeta). III. A fine structural study of the role of non-epidermal tissues. Cell Tissue Res 154: 83–102PubMedCrossRefGoogle Scholar
  15. Burnet FM (1959) The clonal selection theory of acquired immunity. Cambridge Univ Press, LondonGoogle Scholar
  16. Buss LW (1982) Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc Natl Acad Sci USA 79: 5337–5344PubMedCrossRefGoogle Scholar
  17. Cameron GR (1932) Inflammation in earthworms. J Pathol Bacteriol 35: 933–972CrossRefGoogle Scholar
  18. Châteaureynaud-Duprat P, Izoard F (1973) Etude des mécanismes de défense chez Lumbricus terres-tris. C R Acad Sci Paris 276: 2859Google Scholar
  19. Chen SC, Fitzpatrick LC, Goven AJ, Venables BJ, Cooper EL (1991) Nitroblue tetrazolium dye reduction by earthwormLumbricus terrestris coelomocytes: an enzyme assay for non-specific immunotoxicity of xenobiotics. Environ Toxicol Chem 10: 1037–1043CrossRefGoogle Scholar
  20. Cohn M, Langman R (1990) The protecton: the unit of humoral immunity selected by evolution. Immunol Rev 115: 1–131CrossRefGoogle Scholar
  21. Cooper EL (1968) Transplantation immunity in annelids. I. Rejection of xenografts exchanged between Lumbricus terrestris and Eisenia foetida. Transplantation 6: 322–337PubMedCrossRefGoogle Scholar
  22. Cooper EL (1969a) Chronic allograft rejection in Lumbricus terrestris. J Exp Zool 171: 69–73PubMedCrossRefGoogle Scholar
  23. Cooper EL (1969b) Specific tissue graft rejection in earthworms. Science 166: 1414–1415PubMedCrossRefGoogle Scholar
  24. Cooper EL (1971) Phylogeny of transplantation immunity. Graft rejection in earthworms. Transplant Proc 3: 214–216PubMedGoogle Scholar
  25. Cooper EL (1973a) Evolution of cellular immunity In: Braun W, Ungar J (eds) Non-specific factors influencing host resistance. Karger, Basel, pp 11–23Google Scholar
  26. Cooper EL (1973b) Earthworm coelomocytes: role in understanding the evolution of cellular immunity. I. Formation of monolayers and cytotoxicity. In: Rehácek J, Blaskovic D, Hink WF (eds) Proc 3rd Int Coll Invertebr Tissue Cult. Publ House Slovak Acad Sci, Bratislava, pp 381–404Google Scholar
  27. Cooper EL (1974) Phylogeny of leukocytes: Earthworm coelomocytes in vitro and in vivo. In: Lindahl-Kiessling K, Osaba D (eds) Lymphocyte recognition and effector mechanisms. Academic Press, New York, pp 155–162Google Scholar
  28. Cooper EL (1979a) The earthworm coelomocyte: A mediator of cellular immunity. In: Wright RK, Cooper EL (eds) Phylogeny of thymus and bone marrow-bursa cells. Elsevier, Amsterdam, pp 9–18Google Scholar
  29. Cooper EL (1979b) Earthworms and immunology. TIBS 4: 295–296Google Scholar
  30. Cooper EL (1981) Immunity in invertebrates. CRC Crit Rev Immunol 2: 1–32Google Scholar
  31. Cooper EL (1982a) Invertebrate defense systems: an overview. In: Cohen N, Sigel MM (eds) The reticuloendothelial system. A comprehensive treatise 3. Plenum Press, New York, pp 1–35Google Scholar
  32. Cooper EL (1982b) Did Darwinism help comparative immunology? Am Zool 22: 890Google Scholar
  33. Cooper EL (1986) Evolution of histocompatibility. In: Brehelin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York, pp 139–150CrossRefGoogle Scholar
  34. Cooper EL (1991) Evolutionary development of neuroendocrineimmune system. Adv Neuroimmunol 1: 83–96CrossRefGoogle Scholar
  35. Cooper EL (1992a) Perspectives in neuroimmunomodulation: lessons from the comparative approach. An Biol 1: 169–180Google Scholar
  36. Cooper EL (1992b) Overview of Immunoevolution. Boll Zool 59: 119–128CrossRefGoogle Scholar
  37. Cooper EL, Mansour MH (1989) Distribution of Thy-1 in invertebrates and ectothermic vertebrates. In: Reif AE, Schlesinger M (eds) Cell surface antigen Thy-1. Immunology, neurology, and therapeutic applications. Marcel Dekker, New York, pp 197–219Google Scholar
  38. Cooper EL, Roch P (1984) Earthworm leukocyte interactions during early stages of graft rejection. J Exp Zool 232: 67–72PubMedCrossRefGoogle Scholar
  39. Cooper EL, Roch P (1986) Second-set allograft responses in the earthworm Lumbricus terrestris Transplantation 41: 514–520Google Scholar
  40. Cooper EL, Roch P (1992) The capacities of earthworms to heal wounds and to destroy allografts are modified by polychlorinated biphenyls (PCB). J Invertebr Pathol 60: 59–63PubMedCrossRefGoogle Scholar
  41. Cooper EL, Stein EA (1981) Oligochaetes. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells. Academic Press, New York, pp 75–140Google Scholar
  42. Cooper EL, Winger LA (1975) Transplantation immunity in annelids. III. Eifects of temperature on xenograft rejection in earthworms. Am Zool 15: 7–11Google Scholar
  43. Cooper EL, MacDonald HR, Sordat B (1979) Separation of earthworm coelomocytes by velocity sedimentation. In: Ruchholtz WM, Muller-Hermelink HK (eds) Function and structure of the immune system. Plenum Press, New York, pp 101–106Google Scholar
  44. Cooper EL, Rinkevich B, Uhlenbruck G, Valembois P (1992) Invertebrate immunity: another viewpoint. Scand J Immunol 35: 247–266PubMedCrossRefGoogle Scholar
  45. Cooper EL, Leung MK, Suzuki MM, Vick K, Cadet P, Stefano GB (1993) An enkephalin-like molecule in earthworm coelomic fluid modifies leukocyte behavior. Dev Comp Immunol 17: 201–209PubMedCrossRefGoogle Scholar
  46. Çotuk A, Dales RP (1984a) The effect of the coelomic fluid of the earthwormEisenia foetida Sav. on certain bacteria and the role of the coelomocytes in internal defense. Comp Biochem Physiol 78A: 271–275CrossRefGoogle Scholar
  47. Çotuk A, Dales RP (1984b) Lysozyme activity in the coelomic fluid and coelomocytes of the earthworm Eisenia foetida Sav. in relation to bacterial infection. Comp Biochem Physiol 78A: 469–474CrossRefGoogle Scholar
  48. Dales RP, Kalac Y (1992) Phagocytic defense by the earthworm Eisenia foetida against certain pathogenic bacteria. Comp Biochem Physiol 101 A: 487–490Google Scholar
  49. Darwin CR (1881) The formation of vegetable mould through the action of worms with observations on their habits. Murray, London Du Pasquier L (1971) Etude comparée d’un facteur cytolytique humoral chez une larve d’amphibien et chez un Oligochète. Arch Zool Exp Gen 112: 81–84Google Scholar
  50. Du Pasquier L (1974) The genetic control of histocompatibility reactions: phylogenetic aspects. Acad Biol Brüx 85: 91–103Google Scholar
  51. Du Pasquier L (1992) Origin and evolution of the vertebrate immune system. APMIS 100: 383–392PubMedCrossRefGoogle Scholar
  52. Du Pasquier L, Duprat P (1968) Aspects humoraux et cellularies d’une immunité naturelle non-spécifique chez I’Oligochète Eisenia foetida (Oligochaeta). C R Acad Sci Paris 266: 538–546Google Scholar
  53. Du Pasquier L, Miggiano VC (1973) The mixed leukocyte reaction in the toad Xenopus laevis. A family study. Transplant Proc 3: 1457–1461Google Scholar
  54. Duprat P (1967) Etude de la prise et du maintien d’un greffon de paroi du corps chez le lombricien Eisenia fetida. Ann Inst Pastèur 113: 867–881Google Scholar
  55. El Amir A, Saad AH, El Deeb S, Wahby AF, Soliman AW, Cooper EL (1986) Serological evidence for a Thy-1 homolog in earthworms. Proc Zool Soc AR Egypt 12: 287–302Google Scholar
  56. Etilinger HM, Hodgins HO, Chiller JM (1977) Evolution of the lymphoid system. II. Evidence for immunoglobulin determinants on all rainbow trout lymphocytes and demonstration of mixed lymphocyte reaction. Eur J Immunol 7: 881–887CrossRefGoogle Scholar
  57. Eyambe GS, Goven AJ, Fitzpatrick LC, Venables BJ, Cooper EL (1991) Extrusion protocol for use in chronic immunotoxicity studies with earthworm Lumbricus terrestris coelomic leukocytes. Lab Anim 25: 61–67PubMedCrossRefGoogle Scholar
  58. Fitzpatrick LC, Goven AJ, Venables BJ, Rodriguez J, Cooper EL (1990) Earthworm immunoassay for evaluating biological effects of exposure to hazardous materials. In: Sandh S, Lower WR, de Serres FJ, Suk WA, Tice RR (eds) In situ, evaluation of biological hazards of environmental pollutants. Plenum Press, New York, pp 119–129Google Scholar
  59. Friedman MM, Weiss L (1982) The leukocytic organ of the megascolecid earthworm Amynthas diffringens (Annelida, Oligochaeta). J Morphol 174: 251–268CrossRefGoogle Scholar
  60. Goven A J, Kennedy J (1995) Environmental pollution and toxicity in invertebrates: an earthworm model for immunotoxicology. In: Cooper EL (ed) Invertebrate immune responses. ACEP 24. Springer, Berlin Heidelberg New York (in press)Google Scholar
  61. Goven AJ, Eyambe GS, Fitzpatrick LC, Venables BJ, Cooper EL (1993) Cellular biomarkers for measuring toxicity of xenobiotics: effects of polychlorinated biphenyls on earthworm Lumbricus terrestris coelomocytes. Environ Toxicol Chem 12: 863–870Google Scholar
  62. Goven A J, Chen SC, Fitzpatrick LC, Venables BJ (1994) Lysozyme activity in earthworm (Lumbricus terrestris) coelomic fluid and coelomocytes: an enzyme assay for immunotoxicity of xenobiotics. Environ Toxicol Chem 13: 607–613Google Scholar
  63. Haas W, Kuhn R (1992) Knock out mice models for immunodeficiency diseases. In: Gergeley J, Benczur M, Erdei A, Falus A, Fust G, Medayesi G, Petranyis G, Rajnavolgyi E (eds) Progress in immunology, vol II. Springer, Budapest, p 561Google Scholar
  64. Hirigoyenberry F, Lassalle F, Lassegues M (1990) Antibacterial activity of Eisenia fetida andrei coelomic fluid: Transcription and translation regulation of lysozyme and proteins evidenced after bacterial infestation. Comp Biochem Physiol 95B: 71–75Google Scholar
  65. Hirigoyenberry F, Lassègues M, Roch P (1992) Antibacterial activity of Eisenia fetida andrei coelomic fluid: immunological study of the two major antibacterial proteins. J Invertebr Pathol 59: 69–74CrossRefGoogle Scholar
  66. Hostetter RK, Cooper EL (1972) Coelomocytes as effector cells in earthworm immunity. Immnol Commun 1: 155–183Google Scholar
  67. Hostetter RK, Cooper EL (1973) Cellular anamnesis in earthworms. Cell Immunol 9: 384–392PubMedCrossRefGoogle Scholar
  68. Hostetter RK, Cooper EL (1974) Earthworm coelomocyte immunity. In: Cooper EL (ed) Contemporary topics in immunoglobiology 4. Plenum Press, New York, pp 91–107Google Scholar
  69. Hrzenjak T, Hrzenjak M, Kasuba V, Efenberger-Marinculic P, Levanat S (1992) A new source of biologically active compounds: earthworm tissue (Eisenia foetida, Lumbricus rubelus). Comp Biochem Physiol 102A: 441–447CrossRefGoogle Scholar
  70. Janda V, Bohuslav P (1934) Sur l’explantation du tissue de la paroie intestinale et des amebocytes de Lumbricus terrestris L. et des cellules d’epithelium intestinal d’Anodonta cygnaee L. Pubi Fact Sci Univ Charles 133: 1–23 (in Czech with French Summary)Google Scholar
  71. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp Quant Biol 54: 1–13PubMedGoogle Scholar
  72. Janeway CA Jr (1992) The immune system evolved to discriminate infectious nonself from non infectious self. Immunol Today 13: 11–16PubMedCrossRefGoogle Scholar
  73. Kaloustian KV, Rzasa PJ (1986) Immunochemical evidence on the occurrence of opioid and gastrin-like peptides in tissues of the earthworm Lumbricus terrestris. In: Stefano GB (ed) CRC handbook of comparative opioid and related neuropeptide mechanisms, vol 1. CRC Press, Boca Raton, pp 73–85Google Scholar
  74. Kauschke E, Mohrig W (1987a) Comparative analysis of hemolytic and hemagglutinating activities in the coelomic fluid ofEisenia foetida and Lumbricus terrestris (Annelida, Lubricidae). Dev Comp Immunol 11: 331–341PubMedCrossRefGoogle Scholar
  75. Kauschke E, Mohrig W (1987b) Cytotoxic activity in the coelomic fluid of the annelid Eisenia foetida Sav. J Comp Physiol B 157: 77–83PubMedCrossRefGoogle Scholar
  76. Keilin ND (1925) Parasitic autotomy of the host as a mode of liberation of coelomic parasites from the body of the earthworm. Parasitology 17: 170–172CrossRefGoogle Scholar
  77. Klein J (1989) Are invertebrates capable of anticipatory immune response? Scand J Immunol 29: 499–505PubMedCrossRefGoogle Scholar
  78. Langman RE (1989) The immune system. Evolutionary principles guide our understanding of this complex biological defense system. Academic Press, New YorkGoogle Scholar
  79. Langman RE (1992) Comment. Immunol Today 13: 399–400CrossRefGoogle Scholar
  80. Lassalle F, Lassègues M, Roch P (1988) Protein analysis of earthworm coelomic fluid IV. Evidence, activity, induction and purification of Eisenia fetida andrei lysozyme (Annelida). Comp Biochem Physiol 91B: 187–192Google Scholar
  81. Lassègues M, Valembois P (1994) Structural study of a glycoprotein system involved in immune defense in an earthworm. Proc 6th ISDCI Congr, Wageningen. Pergamon Press, New York, 18 Suppl 1: S122Google Scholar
  82. Lassègues M, Roch P, Cadoret MA, Valembois P (1984) Mise en évidence de protéines hémolytiques et hémagglutinantes spécifiques de l’albumen des cocons du Lombricien Eisenia fetida andrei. C R Acad Sci Paris Ser III 299: 691–696Google Scholar
  83. Lassègues M, Roch P, Valembois P (1989) Antibacterial activity of Eiseniafetida andrei coelomic fluid: Evidence, induction and animal protection. J Invertebr Pathol 53: 1–6CrossRefGoogle Scholar
  84. Laulan A, Lestage J, Bouc AM, Chateaureynaud-Duprat P, Fontaine M (1983) Mise en evidence de substances contenues dans le liquide coelomique de Lumbricus terrestris possédant des fonctions communes avec celles de certains composants du complement humain. Ann Immunol Inst Pasteur 1340: 223–232CrossRefGoogle Scholar
  85. Laulan A, Morel A, Lestage J, Delaage M, Chateaureynaud P (1985) Evidence of synthesis by Lumbricus terrestris of specific substances in response to an immunization with a synthetic hapten. Immunology 56: 751–758PubMedGoogle Scholar
  86. Laulan A, Lestage J, Bouc AM, Chateaureynaud-Duprat (1988) The phagocytic activity of Lumbricus terrestris coelomocytes is enhanced by the vertebrate opsonins: IgG and complement C3b fragment. Dev Comp Immunol 12: 269–278PubMedCrossRefGoogle Scholar
  87. Lemmi CAE (1982) Characteristics of primitive leukocytes equipped with receptors for xenogeneic grafts. In: Cooper EL, Brazier MAB (eds) Developmental immunology: clinical problems and Aging. Academic Press, New YorkGoogle Scholar
  88. Lemmi CAE, Cooper EL (1981) Induction of coelomocyte proliferation by xenografts in the earthworm Lumbricus terrestris. Dev Comp Immunol 5: 73–80CrossRefGoogle Scholar
  89. Lemmi CA, Cooper EL, Moore TC (1974) An approach to studying evolution of cellular immunity. In; Cooper EL (ed) Contemporary topics in immunobiology. Plenum Press, New York, pp 4, 109–119Google Scholar
  90. Liebmann E (1942) The coelomocytes of Lumbricidae. J Morphol 71: 221–245CrossRefGoogle Scholar
  91. Linthicum DS, Stein EA, Marks DH, Cooper EL (1977a) Electron microscopic observations of normal coelomocytes from the earthworm Lumbricus terrestris. Cell Tissue Res 185: 315–330PubMedCrossRefGoogle Scholar
  92. Linthicum DS, Marks DH, Stein EA, Cooper EL (1977b) Graft rejection in earthworms: an electron-microscopic study. Eur J Immunol 7: 871–876PubMedCrossRefGoogle Scholar
  93. Lonai P, McDevitt HO (1977) The expression of I-region gene products on lymphocytes. I. Demonstration of MLR determinants on T cells. Immunogenetics 4: 17–31CrossRefGoogle Scholar
  94. Marchalonis JJ, Schlüter SF (1990) On the relevance of invertebrate recognition and defense mechanisms to the emergence of the immune response of vertebrates. Scand J Immunol 32: 13–20PubMedCrossRefGoogle Scholar
  95. Marks DH, Stein EA, Cooper EL (1979) Chemotactic attraction ofLumbricus terrestris coelomocytes to foreign tissue. Dev Comp Immunol 3: 277–285PubMedCrossRefGoogle Scholar
  96. Miggiano VC, Birgen I, Pink JRK (1974) The mixed leukocyte reaction in chickens. Evidence for control by the major histocompatibility complex. Eur J Immunol 4: 397–401PubMedCrossRefGoogle Scholar
  97. Mohrig W, Kauschke E, Ehlers M (1984) Rosette formation of the coelomocytes of the earthworm Lumbricus terrestris L. with sheep erythrocytes. Dev Comp Immunol 8: 471–476PubMedCrossRefGoogle Scholar
  98. Mohrig W, Eue I, Kauschke E (1989) Proteolytic activities in the coelomic fluid of earthworms (Annelida, Lumbricidae). Zool Jahrb Physiol 93: 303–317Google Scholar
  99. Nagasawa H, Sawaki K, Fujii Y, Kobayashi M, Segawa T, Suzuki R, Inatomi ft(1991) Inhibition by lombricine from earthworm (Lumbricus terrestris) of the growth of spontaneous mammary tumours in SHN mice. Anticancer Res 11: 1061–1064Google Scholar
  100. Parry MJ (1976) Evidence of mitotic division of coelomocytes in the normal, wounded and grafted earthwormEisenia foetida. Experientia 32: 449–451CrossRefGoogle Scholar
  101. Raftos DA, Cooper EL, Habicht GS, Beck G (1991a) Invertebrate cytokines: tunicate cell proliferation stimulated by an interleukin 1-like molecule. Proc Natl Acad Sci 88: 9518–9522PubMedCrossRefGoogle Scholar
  102. Raftos DA, Stillman DL, Cooper EL (1991b) Interleukin-2 and phytohaemagglutinin stimulate the proliferation of tunicate cells. Immunol Cell Biol 69: 225–234PubMedCrossRefGoogle Scholar
  103. Raftos DA, Cooper EL, Stillman DL, Habicht GS, Beck G (1992) Invertebrate cytokines II: Release of interleukin-1-like molecules from tunicate hemocytes stimulated with zymosan. Lymphokine Cytokine Res 11: 235–240PubMedGoogle Scholar
  104. Ratcliffe NA, Rowley AF, Fitzgerald SW, Rhodes CP (1985) Invertebrate immunity: basic concepts and recent advances. Int Rev Cytol 97: 183–384CrossRefGoogle Scholar
  105. Rejnek J, TuckoväL, Sima P, Kostka J (1986) The proteins in Lumbricus terrestris and Eisenia foetida coelomic fluids and on coelomocytes reacting with sheep and goat IgG molecules. Dev Comp Immunol 10: 467–475PubMedCrossRefGoogle Scholar
  106. Rejnek J, Tuckovä L, Zikän J, Tomana M (1991) The interaction of a protein from the coelomic fluid of earthworms with staphylococcal protein A. Dev Comp Immunol 15: 269–277PubMedCrossRefGoogle Scholar
  107. Rejnek J, Tuckovä L, Sima P, Bilej M (1993) The fate of protein antigen in earthworms: study in vivo. Immunol Lett 36: 131–136PubMedCrossRefGoogle Scholar
  108. Richman DD, Cleveland PH, Oxman MN, Johnson KM (1982) The binding of Staphylococcal protein A by the sera of different animal species. J Immunol 128: 2300–2305PubMedGoogle Scholar
  109. Roch P (1977) Reactivite in vitro des leukocytes du lombricien Eisenia foetida Sav. a quelques substances mitogeniques. CR Acad Sci Ser D 284: 705–708Google Scholar
  110. Roch P (1979a) Leukocyte DNA synthesis in grafted lumbricids: an approach to study histocompatibility in invertebrates. Dev Comp Immunol 3: 417–428PubMedCrossRefGoogle Scholar
  111. Roch P (1979b) Protein analysis of earthworm coelomic fluid. 1. Polymorphic system of the natural hemolysin of Eisenia fetida andrei. Dev Comp Immunol 3: 599–608PubMedCrossRefGoogle Scholar
  112. Roch P (1995) A definition of cytolytic responses in invertebrates In: Cooper EL (ed) Invertebrate immune responses. ACEP 24: Springer, Berlin Heidelberg New York, (in press)Google Scholar
  113. Roch PG, Cooper EL (1983) A β 2-microglobulin-like molecule on earthworm (L. terrestris) leukocyte membranes. Dev Comp Immunol 7: 633–636CrossRefGoogle Scholar
  114. Roch P, Valembois P, Du Pasquier L (1975) Response of earthworm leukocytes to concanavalin A and transplantation antigens. In: Hildemann WH, Benedict AA (eds) Immunologic phytogeny. Plenum, New York, pp 45–54Google Scholar
  115. Roch P, Valembois P, Davant N, Lassegues M (1981) Protein analysis of earthworm coelomic fluid II. Isolation and biochemical characterization of the Eisenia fetida andrei factor (EFAF). Comp Biochem Physiol 69B: 829–836Google Scholar
  116. Roch P, Cooper EL, Eskinazi DP (1983) Serological evidence for a membrane structure related to human-microglobulin expressed by certain earthworm leukocytes. Eur J Immunol 13: 1037–1042PubMedCrossRefGoogle Scholar
  117. Roch P, Davant N, Lassegues M (1984) Isolation of agglutinins from lysins in earthworm coelomic fluid by gel filtration followed by chromatofocusing. J Chromatogr 290: 231–235CrossRefGoogle Scholar
  118. Roch P, Valembois P, Vaillier J (1986) Amino acid composition and relationships of 5 earthworm defense proteins. Comp Biochem Physiol 85B: 747–751Google Scholar
  119. Roch P, Valembois P, Lassegues M (1987) Genetic and biochemical polymorphism of earthworm humoral defenses. In Developmental and comparative immunology. Cooper EL, Langlet C, Bierne J (eds) Alan R Liss, New York, pp 91–102Google Scholar
  120. Roch P, Lassegues M, Valembois P (1991a) Antibacterial activity of Eisenia fetida andrei coelomic fluid: III Relationship within the polymorphic hemolysins. Dev Comp Immunol 15: 27–32PubMedCrossRefGoogle Scholar
  121. Roch P, Stabili L, Pagliara P (1991b) Purification of three serine proteases from the coelomic cells of earthworms (Eisenia foetida). Comp Biochem Physiol 98B: 597–602Google Scholar
  122. Rodriguez-Grau JB, Venables BJ, Fitzpatrick LC, Goven AJ, Cooper EL (1$.89) Suppression of secretory rosette formation by PCBs in Lumbricus terrestris: an earthworm immunoassay for humoral immunotoxicity of xenobiotics. Environ Toxicol Chem 8: 1201–1207Google Scholar
  123. Saad A-H, Cooper E (1990) Evidence for a Thy-1 like molecule expressed on earthworm leukocytes. Zool Sci 7: 217–222Google Scholar
  124. Seeger MA, Haffiey L, Kaufman TC (1988) Characterization of amalgam: a member of the immunoglobulin superfamily from Drosophila. Cell 55: 589–600PubMedCrossRefGoogle Scholar
  125. Seymour J, Nappi A, Valembois P (1995) Characterization of a phenoloxidase of the coelomic fluid of the eartworm Eisenia fetida andrei by electrochemical detection and electrophoresis. Anim Biol (in press)Google Scholar
  126. Shalev A, Greenberg AH, Logdberg L, Björck L (1981) β 2-microglobulin-like molecules in low vertebrates and invertebrates. J Immunol 127: 1186–1191Google Scholar
  127. Shalev A, Pla M, Ginsburger-Vogel T, Echalier G, Logdberg L, Bjorck L, Colombani J, Segal S (1983) Evidence for β 2-microglobulin-like and H-2-like antigenic determinants in Drosophila. J Immunol 130: 297–302PubMedGoogle Scholar
  128. Shalev A, Segal S, Eli MB (1985) Evolutionary conservation of brain Thy-1 glycoprotein in vertebrates and invertebrates. Dev Comp Immunol 9: 494–506CrossRefGoogle Scholar
  129. Sima P, Vetvicka V (1990) Evolution of Immune Reactions. CRC Press, Boca RatonGoogle Scholar
  130. Stein EA, Cooper EL (1978) Cytochemical observations of coelomocytes from the earthworm Lumbricus terrestris. Histochem J 10: 657–678PubMedCrossRefGoogle Scholar
  131. Stein EA, Cooper EL (1981) The role of opsonins in phagocytosis by coelomocytes of the earthworm Lumbricus terrestris. Dev Comp Immunol 5: 415–425PubMedGoogle Scholar
  132. Stein EA, Cooper EL (1982) Agglutinins as receptor molecules: a phylogenetic approach. In: Cooper EL, Brazier MAB (eds) Developmental immunology: clinical problems and aging. Academic Press, New York, pp 85–98Google Scholar
  133. Stein EA, Cooper EL (1983) Carbohydrate and glycoprotein inhibitors of naturally occurring and induced agglutinins in the earthworm Lumbricus terrestris. Comp Biochem Physiol 76B: 197–206Google Scholar
  134. Stein EA, Cooper EL (1988) In vitro agglutinin production by earthworm leukocytes. Dev Comp Immunol 12: 531–547PubMedCrossRefGoogle Scholar
  135. Stein EA, Avtalion RR, Cooper EL (1977) The coelomocytes of the earthworm Lumbricus terrestris: morphology and phagocytic properties. J Morphol 153: 467–476PubMedCrossRefGoogle Scholar
  136. Stein EA, Moravati A, Rahimian P, Cooper EL (1980) Lipid agglutinins from coelomic fluid of the earthworm, Lumbricus terrestris. Comp Biochem Physiol 94B: 703–707Google Scholar
  137. Stein EA, Wojdani A, Cooper EL (1982) Agglutinins in the earthworm Lumbricus terrestris: naturally occurring and induced. Dev Comp Immunol 6: 407–421PubMedGoogle Scholar
  138. Stein EA, Younai S, Cooper EL (1986) Bacterial agglutinins of the earthworm, Lumbricus terrestris. Comp Biochem Physiol 84B: 409–415Google Scholar
  139. Stein EA, Younai S, Cooper EL (1990) Separation and partial purification of agglutinins from coelomic fluid of the earthworm, Lumbricus terrestris. Comp Biochem Physiol 97B: 701–705Google Scholar
  140. Stewart J (1992) Immunoglobulins did not arise in evolution to fight infection. Immunol Today 13: 396–395PubMedCrossRefGoogle Scholar
  141. Sun SC, Lindstrom I, Boman HG, Faye I, Schmidt O (1990) Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily. Science 250: 1729–1732PubMedCrossRefGoogle Scholar
  142. Suzuki MM, Cooper EL (1995a) Allogeneic killing by earthworm effector cells. Nat Immun (in press)Google Scholar
  143. Suzuki MM, Cooper EL (1995b) Killing of intrafamilial and xenogeneic targets by earthworm effector cells. Immunol Lett 44: 45–49PubMedCrossRefGoogle Scholar
  144. Suzuki MM, Cooper EL (1995c) Characteristics of effector cells - kinetics and electron microscopy using mammalian targets. Zool Sci (in press)Google Scholar
  145. Suzuki MM, Cooper EL, Eyambe GS, Goven AJ, Fitzpatrick LC, Venables BJ (1995) Effects of exposure to polychlorinated biphenyls PCBs) on natural cytotoxicity of earthworm coelomocytes, vol 14 (No. 10) Environ Toxicol ChemGoogle Scholar
  146. Takahashi T, Iwase T, Kobayashi K, Rejnek J, Mestecky J, Moro I (1992) Phylogeny of the imnunoglobulin joining (J) chain. 7th Int Cogr Mucosal Immunol, Prague, Czech Republic 16–20 August 1992, 234 ppGoogle Scholar
  147. Teillaud JL, Crevat D, Chardon P, Kalil J, Goujet-Zalc C, Mahouy G, Vaiman M, Fellous M, Pious D (1982) Monoclonal antibodies as a tool for phylogenetic studies of major histocompatibility antigens and β2-microglobulin. Immunogenetics 15: 377–384PubMedCrossRefGoogle Scholar
  148. Toupin J, Lamoureux G (1976) Coelomoeytes of earthworms: phytohemagglutinin (PHA) responsiveness. In: Wright RK, Cooper EL (eds) Phylogeny of thymus and bone marrow-bursa cells. Elsevier, Amsterdam, pp 19–27Google Scholar
  149. Toupin J, Leyva F, Lamoureux G (1977) Transformation blastique par la PHA des coelomocytes de Lumbricus terrestris. Ann Immunol Inst Pasteur 128C: 29–32Google Scholar
  150. Tuckovä L, Bilej M (1995) Mechanisms of antigen processing in invertebrates: are there receptors? In: Cooper EL (ed) Intertebrate immune responses. ACEP 24. Springer, Berlin Heidelberg New York (in press)Google Scholar
  151. Tuckovä L, Rejnek J, Sima P, Ondejovä R (1986) Lytic activities in coelomic fluid of Eisenia foetida and Lumbricus terrestris. Dev Comp Immunol 10: 181–189PubMedCrossRefGoogle Scholar
  152. Tuckovä L, Rejnek J, Sima P (1988) Response to parenteral stimulation in earthwormsL. terrestris and E. foetida. Dev Comp Immunol 12: 287–296PubMedCrossRefGoogle Scholar
  153. Tuckovä L, Rejnek J, Bilej M, Pospisil R (1991a) Characterization of antigen-binding protein in earthworms Lumbricus terrestris andEisenia foetida. Dev Comp Immunol 15: 263–268PubMedCrossRefGoogle Scholar
  154. Tuckovä L, Rejnek J, Bilej M, Hajkova H, Romanovsky A (1991b) Monoclonal antibodies to antigen-binding protein of annelids Lumbricus terrestris. Comp Biochem Physiol 100B: 19–23Google Scholar
  155. Tuckovä L, Bilej M, Rejnek J (1995) The fate of protein antigen in annelids in vivo and in vitro study. Adv Exp Med Biol (in press)Google Scholar
  156. Vaillier J, Cadoret M-A, Roch P, Valembois P (1985) Protein analysis of earthworm coelomic fluid. III. Isolation and characterization of several bacteriostatic molecules fromEisenia fetida andrei. Dev Comp Immunol 9: 11–20PubMedCrossRefGoogle Scholar
  157. Valembois P (1971a) Role des leucocytes dans l’acquisition d’une immunite antigreffe specifique chez les lombriciens. Arch Zool Exp Gen 112: 97–104Google Scholar
  158. Valembois P (1971b) Etude ultrastructurale des coelomocytes du lombricien Eisenia foetida Sav. Bull Soc Zool Fr 96: 59–72Google Scholar
  159. Valembois P (1974) Cellular aspects of graft rejection in earthworms and some other metazoa. In: Cooper EL (ed) Contemporary topics in immunology. Plenum Press, New York, pp 75–90Google Scholar
  160. Valembois P, Roch P (1977) Identification par autoradiographic des leucocytes stimules a la suite de plaies ou de greffes chez un ver de terre. Biol Cell 28: 81–82Google Scholar
  161. Valembois P, Roch P, DuPasquier L (1973) Dégradation in vitro de protéine étrangère par les macrophages du Lombricien Eisenia foetida Sav. CR Acad Sci Paris Sér III 277: 57–60Google Scholar
  162. Valembois P, Roch P, Boiledieu D (1980a) Natural and induced cytotoxicities in sipunculids and annelids. In: Manning MJ (ed) Phylogeny of immunological memory. Elsevier, Amsterdam, pp 47–55Google Scholar
  163. Valembois P, Roch P, Du Pasquier L (1980b) Evidence of MLR-like reaction in an invertebrate, the earthworm Eisenia foetida. In: Solomon JB (ed) Aspects of developmental and comparative immunology. Pergamon Press, Oxford, pp 23–30Google Scholar
  164. Valembois P, Roch P, Boiledieu D (1982a) Cellular denfense system of the Platyhelminths, Nemertinea, Sipunculidea and Annelida. In: Cohen N, Sigei M (eds) The reticuloendothelial system: a comprehensive treatise, vol 3. Plenum Press, New York, pp 89–139Google Scholar
  165. Valembois P, Roch P, Lassègues M, Cassand P (1982b) Antibacterial activity of the hemolytic system from the earthworm Eisenia fetida andrei. J Invertebr Pathol 40: 21–27CrossRefGoogle Scholar
  166. Valembois P, Roch P, Lassègues M (1984) Simultaneous existence of hemolysins and hemagglutinins in the coelomic fluid and in the cocoon albumen of the earthworm Eisenia fetida andrei. Comp Biochem Physiol 78A: 141–145CrossRefGoogle Scholar
  167. Valembois P, Lassègues M, Roch P, Vaillier J (1985) Scanning electron microscopic study of the involvement of coelomic cells in earthworm antibacterial defense. Cell Tissue Res 240: 479–484CrossRefGoogle Scholar
  168. Valembois P, Roch P, Lassègues M (1986) Antibacterial molecules in annelids. In: Brehélin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York, pp 74–93CrossRefGoogle Scholar
  169. Valembois P, Seymour J, Roch P (1991) Evidence and cellular localization of qp oxidative activity in the coelomic fluid of the earthworm Eisenia foetida andrei. J Invertebr Pathol 57: 177–183CrossRefGoogle Scholar
  170. Valembois P, Lassègues M, Roch P (1992) Formation of brown bodies in the coelomic cavity of the earthworm Eisenia fetida andrei and attendant changes in shape and adhesive capacity of constitutive cells. Dev Comp Immunol 16: 95–101PubMedCrossRefGoogle Scholar
  171. Valembois P, Seymour J, Lassegues M (1994) Evidence of lipofuscin and melanin in the brown body of the earthworm Eisenia fetida andrei. Cell Tissue Res 277: 183–188CrossRefGoogle Scholar
  172. Venables BJ, Fitzpatrick LC, Goven AJ (1992) Earthworms as indicators of ecotoxicity. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of earthworms. Intercept, Andover, pp 197–206Google Scholar
  173. Vetvicka V (1994) Concluding remarks. In: Vetvicka V, Sima P, Cooper EL, Bilej M, Roch P (eds) The immunology of annelids. CRC Press, Boca Raton, pp 281–286Google Scholar
  174. Vetvicka V, Sima P, Cooper EL, Bilej M, Roch P (1994) The immunology of annelids. CRC Press, Boca RatonGoogle Scholar
  175. Ville P, Roch P, Cooper EL, Masson P, Narbonne J-F (1995) PCBs increase molecular-related activities (lysozyme, pathogenic antibacterial, hemolysis, preteases) but inhibit macrophage-related functions (phagocytosis, wound healing) in earthworms. J Invertebr Pathol (in press)Google Scholar
  176. Williams AF, Barclay AN (1988) The immunoglobulin superfamily domains for cell surface recognition. Annu Rev Immunol 6: 381–405PubMedCrossRefGoogle Scholar
  177. Wojdani A, Stein EA, Lemmi CA, Cooper EL (1982) Agglutinins and proteins in the earthworm, Lumbricus terrestris, before and after injection of erythrocytes, carbohydrates, and other materials. Dev Comp Immunol 6: 613–624PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • E. L. Cooper
    • 1
  1. 1.Laboratory of Comparative Immunology, Department of Neurobiology, School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations