Skip to main content

Molecular Aspects of Immune Reactions in Echinodermata

  • Chapter
Invertebrate Immunology

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 15))

Abstract

The main challenge for any living organism is its encounter with potentially pathogenic bacteria and other microorganisms. Therefore, it should posses a defense mechanism which is capable of (1) recognizing foreign material which has entered the body, and (2) finding a way to either expel it or render it inoffensive. It is always very hazardous to compare and match the host defense systems operating in invertebrate organisms to the well-known vertebrate immune system. In fact of the enormous amount of data coming from vertebrate immunology research, only a small number of reports are applicable to the defense mechanisms functioning in invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker ME (1988) Invertebrate vitellogenin is homologous to human von Willebrand factor. Biochem J 256: 1059–1063

    PubMed  CAS  Google Scholar 

  • Beck G, Habicht GS (1986) Isolation and characterization of a primitive interleukin-l-like protein from an invertebrate, Asteria forbesi Proc Natl Acad Sci USA 83: 7429–7433

    Article  PubMed  CAS  Google Scholar 

  • Beck G, Habicht GS (1991a) Primitive cytokines: harbingers of vertebrate defense. Immunol Today 12: 180–183

    Article  PubMed  CAS  Google Scholar 

  • Bech G, Habicht GS (1991b). Purification and biochemical characterization of an invertebrate interleukin 1. Mol. Immunol 28: 577–584

    Article  Google Scholar 

  • Beck G, O’Brian RF, Habicht GS (1989) Invertebrates cytokines: the phylogenetic emergence of interleukin-1. BioEssay 11: 62–67

    Article  CAS  Google Scholar 

  • Bertheussen K (1979) The cytotoxic reaction in allogeneic mixtures of echinoid phagocytes. Exp Cell Res 120: 373–381

    Article  PubMed  CAS  Google Scholar 

  • Bertheussen K (1981) Endocytosis by echinoid phagocytes in vitro I. Recognition of foreign matter. Dev Comp Immunol 5: 241–250

    Article  PubMed  CAS  Google Scholar 

  • Bertheussen K (1983) Complement-like activity in sea urchin coelomic fluid. Dev Comp Immunol 7: 21–31

    Article  PubMed  CAS  Google Scholar 

  • Bertheussen K (1984) Complement and lysins in invertebrates. Dev Comp Immunol 3: 173–181

    Google Scholar 

  • Bertheussen K, Seljelid R (1978) Echinoid phagocytes in vitro. Exp Cell Res 111: 401–412

    Article  PubMed  CAS  Google Scholar 

  • Burke RD, Watkins RF (1991) Stimulation of starfish coelomocytes by interleukin-1. Biochem Biophys Res Commun 180: 579–584

    Article  PubMed  CAS  Google Scholar 

  • Burnet FM (1968) Evolution of the immune process in vertebrates. Nature 218: 426–430

    Article  PubMed  CAS  Google Scholar 

  • Canicatti C (1990a) Hemolysins: pore-forming proteins in invertebrates. Experientia 46: 239–244

    Article  PubMed  CAS  Google Scholar 

  • Canicatti C (1990b) Lysosomal enzyme pattern in Holothuria polii coelomocytes. J Invertebr Pathol 56: 70–74

    Article  CAS  Google Scholar 

  • Canicatti C (1991) Binding properties of Paracentrotus lividus (Echinoidea) hemolysins. Comp Biochem Physiol 98A: 463–468

    Article  CAS  Google Scholar 

  • Canicatti C, D’Ancona G (1989) Cellular aspects of Holothuria polii immune response. J Invertebr Pathol 53: 152–158

    Article  Google Scholar 

  • Canicatti C, Miglietta A (1989) Arylsulphatase in echinoderm immunocompetent cells. Histochem J 21: 419–424

    Article  PubMed  CAS  Google Scholar 

  • Canicatti C, Parrinello N (1982) Chromatographic separation of coelomic fluid from Holothuria polii (Echinodermata) and partial characterization of the fractions reacting with erithrocytes. Experientia 39: 764–766

    Article  Google Scholar 

  • Canicatti C, Rizzo A (1991) A 220 KDa coelomocyte aggregating factor involved in Holothuria polii cellular clotting. Eur J Cell Biol 56: 79–83

    PubMed  CAS  Google Scholar 

  • Canicatti C, Tschopp J (1990) Holozyme A: one of the serine proteases of Holothuria polii coelomocytes. Comp Biochem Physiol 96B: 739–742

    CAS  Google Scholar 

  • Canicatti C, Pagliara P, Stabili L (1992) Sea urchin coelomic fluid agglutinin mediates coelomocyte adhesion. Eur J Cell Biol 58: 291–295

    PubMed  CAS  Google Scholar 

  • Cervello M, Matranga V (1989) Evidence of a precursor-product relationship between vitellogenin and toposome, a glycoprotein complex mediating cell adhesion. Cell Diff Dev 26: 67–76

    Article  CAS  Google Scholar 

  • Cervello M, Arizza V, Lattuca G, Parrinello N, Matranga V (1994) Detection of vitellogenin in a subpopulation of sea urchin coelomocytes. Eur J Cell Biol 64: 314–319

    PubMed  CAS  Google Scholar 

  • Coffaro K (1978) Clearance of bacteriophage T4 in the sea urchin Lytechinus pictus. J Invertebr Pathol 32: 384–385

    Article  Google Scholar 

  • Coffaro KA, Hinegardner RT (1977) Immune response in the sea urchin Lytechinus pictus. Science 197: 1389–1390

    Article  PubMed  CAS  Google Scholar 

  • Doolittle RF (1985) The genealogy of some recently evolved vertebrate proteins. Trends Biochem Sci 10: 233–237

    Article  CAS  Google Scholar 

  • Doolittle RF, Riley MR (1990) The ammino terminal sequence of lobster fibrinogen reveals common ancestry with vitellogenins. Biochem Biophys Res Commun 167: 16–19

    Article  PubMed  CAS  Google Scholar 

  • Edds KT (1985) Morphological and cytoskeletal transformation in sea urchin coelomocytes. In: Cohen WD (ed) Blood cells of marine invertebrates: experimental systems in cell biology and comparative physiology, A R Liss, New York, pp 53–74

    Google Scholar 

  • Gerardi P, Lassegues M, Canicatti C (1990) Cellular distribution of sea urchin antibacterial activity. Biol Cell 70: 153–157

    Article  Google Scholar 

  • Goldschmidt-Clermont P, Machesky L, Doberstein S, Pollard T (1991) Mechanism of the interaction of human platelet profiUn with actin. J Cell Biol 113: 1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Gratwohl EK, Kellenberg ME, Lorand L, Noll H (1991) Storage, ultrastruetural targeting and function of toposomes and hyalin in sea urchin embryogenesis. Mech Dev 33: 127–138

    Article  PubMed  CAS  Google Scholar 

  • Hilgard HR, Phillips JH (1968) Sea urchin response to foreign substances. Science 161: 1243–1245

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Matsutani T, Mori K, Nomura T (1992) Phagocytosis and hydrogen peroxide production by phagocytes of the sea urchinStrongylocentrotus nudus. Dev Comp Immunol 16: 287–294

    Article  PubMed  CAS  Google Scholar 

  • Johnson PT (1969) The coelomic elements of sea urchins (Strongylocentrotus) III. In vitro reaction to bacteria. J Invertebr Pathol 13: 42–62

    Article  PubMed  CAS  Google Scholar 

  • Johnson PT, Chien PK, Chapman FA (1970) The coelomic elements of sea urchins (Strongylocentrotus) IV. Ultrastructure of leukocytes exposed to bacteria. J Invertebr Pathol 16: 466–469

    Article  PubMed  CAS  Google Scholar 

  • Jolles J, Jolles P (1975) The lysozyme from Asterias rubens. Eur J Biochem 54: 19–23

    Article  PubMed  CAS  Google Scholar 

  • Kanungo K (1982) In vitro studies on the effect of cell-free coelomic fluid, calcium, and/or magnesium on clumping of coelomocytes of the sea star Asteria forbesi. Biol Bull 163: 438–452

    Article  CAS  Google Scholar 

  • Leclerc M, Bajelan M (1992) Homologous antigen for T cell receptor in axial organ cells from the asterid Asterias rubens. Cell Biol Int Rep 16: 487–490

    Article  PubMed  CAS  Google Scholar 

  • Leonard LA, Strandberg JD, Winkelstein JA (1990) Complement-like activity in the sea starAsterias forbesi. Dev Comp Immunol 14: 19–30

    Article  PubMed  CAS  Google Scholar 

  • Masson D, Tschopp J (1985) Isolation of a lytic, pore-forming protein (perforin) from cytolytic T- lymphocytes. J Biol Chem 260: 9069–9072

    PubMed  CAS  Google Scholar 

  • Matranga V, Kuwasaki B, Noll H (1986) Functional characterization of toposome from sea urchin blastula embryos by a morphogenetic cell aggregation assay. EMBO J 5: 3125–3132

    PubMed  CAS  Google Scholar 

  • Matranga V, Di Ferro D, Cervello M, Zito F, Nakano E (1991) Adhesion of sea urchin embryonic cells to substrata coated with cell adhesion molecules. Biol Cell 71: 289–191

    Article  CAS  Google Scholar 

  • Matsunaga T, Mori (1987) The origin of immune system. Scand J Immunol 25: 485–495

    Article  PubMed  CAS  Google Scholar 

  • Matthew S, Wardlaw AC (1984) Echinochrome-A as a bactericidal substance in the coelomic fluid of Echinus esculentus. Comp Biochem Physiol 79B: 161–165

    Google Scholar 

  • McDonald GD, Davidson L, Kitto GB (1992) Amino acid sequence of the coelomic C globin from the sea cucumber Caudina (Molpadia arenicola. J Protein Chem 11: 29–37

    Article  PubMed  CAS  Google Scholar 

  • Millott N (1969) Injury and the axial organ of echinoids. Experientia 25: 756

    Article  Google Scholar 

  • Noll H, Matranga V, Cervello M, Humphreys T, Kuwasaki B, Adelson D (1985) Characterization of toposomes from sea urchin blastula cells: a cell organelle mediating cell adhesion and expressing positional information. Proc Natl Acad Sci USA 82: 8062–8066

    Article  PubMed  CAS  Google Scholar 

  • Pagliara P, Canicatti C (1993) Isolation of coelomocyte granules from sea urchin amoebocytes. Eur J Cell Biol 60: 179–184

    PubMed  CAS  Google Scholar 

  • Parrinello N, Ridone D, Canicatti C (1979) Naturally occurring hemolysins in the coleomic fluid of Holothuria polii. Dev Comp Immunol 3: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Plytcz B, Seljelid R (1993) Bacterial clearance by the sea urchin Strongylocentrous droebachiensis. Dev Comp Immunol 17: 283–289

    Article  Google Scholar 

  • Prendergast R, Suzuki M (1970) Invertebrate protein stimulating mediators of delayed hypersensitivity. Nature 227: 277–279

    Article  PubMed  CAS  Google Scholar 

  • Prendergast RA, Lutty GA, Scott AL (1983) Directed inflammation: the phylogeny of lymphokines. Dev Comp Immunol 7: 629–632

    Article  CAS  Google Scholar 

  • Raftos DA, Cooper EL (1991) Proliferation of lymphocyte-like cells from the solitary tunicate, Stlyla clava, in response to allogeneic stimuli. J Exp Zool 260: 391–400

    Article  PubMed  CAS  Google Scholar 

  • Raison RL, Hull CJ, Hildemann WH (1978) Characterization of immunoglobulin from the Pacific hagfish, a primitive vertebrate. Proc Natl Acad Sci USA 75: 5679–5682

    Article  PubMed  CAS  Google Scholar 

  • Ratacliffe NA, Rowley AF (1979) A comparative synopsis of the structure and function of the blood cells of insects and other invertebrates. Dev Comp Immunol 3: 189–243

    Article  Google Scholar 

  • Reinisch CL, Bang FB (1971) Cell recognition: reaction of the sea star(Asterias vulgaris) to the injection of amoebocytes of sea urchin (Arbacia punctulata). Cell Immunol 2: 496–503

    Article  PubMed  CAS  Google Scholar 

  • Rogers J (1985) Exon shuffling and intron insertion in serine protease genes. Nature 315: 458–459

    Article  PubMed  CAS  Google Scholar 

  • Ryoyama K (1973) Studies on the biological properties of coelomic fluid of sea urchin. I Natrually occurring hemolysins. Biochim Biophys Acta 320: 157–165

    PubMed  CAS  Google Scholar 

  • Ryoyama K (1974) Studies on the biological properties of coelomic fluid of sea urchin. II Naturally occurring hemagglutinin in sea urchin. Biol Bull 146: 404–414

    Article  PubMed  CAS  Google Scholar 

  • Smith LC, Davidson EH (1992) The echinoid immune system and the phylogenetic occurence of immune mechanisms in deuterostomes. Immunol today 13: 356–362

    Article  PubMed  CAS  Google Scholar 

  • Smith LC, Britten RJ, Davidson EH (1992) SpCoell: a sea urchin profilin gene expressed specifically in coelomocytes in response to injury. Mol Biol Cell 3: 403–414

    PubMed  CAS  Google Scholar 

  • Smith VJ (1981) The echinoderms. In: Ratcliffe NA, Rowley AT (eds) Invertebrate Blood Cells. Vol 2. Academic Press, London

    Google Scholar 

  • Yui MA, Bayne CJ (1983) Echinoderm immunology: bacterial clearance by the sea urchin Strongylo-centrotus purpuratus. Biol Bull 165: 473–486

    Article  Google Scholar 

  • Wardlaw AC, Unkless SE (1978) Bactericidal activity of coelomic fluid from the sea urchin Echinus esculentus. J Invertebr Pathol 32: 25–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matranga, V. (1996). Molecular Aspects of Immune Reactions in Echinodermata. In: Rinkevich, B., Müller, W.E.G. (eds) Invertebrate Immunology. Progress in Molecular and Subcellular Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79735-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79735-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79737-8

  • Online ISBN: 978-3-642-79735-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics