Molecular Aspects of Immune Reactions in Echinodermata

  • V. Matranga
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 15)


The main challenge for any living organism is its encounter with potentially pathogenic bacteria and other microorganisms. Therefore, it should posses a defense mechanism which is capable of (1) recognizing foreign material which has entered the body, and (2) finding a way to either expel it or render it inoffensive. It is always very hazardous to compare and match the host defense systems operating in invertebrate organisms to the well-known vertebrate immune system. In fact of the enormous amount of data coming from vertebrate immunology research, only a small number of reports are applicable to the defense mechanisms functioning in invertebrates.


Coelomic Fluid Axial Organ Humoral Molecule Strongylocentrotus Purpuratus Invertebr Pathol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker ME (1988) Invertebrate vitellogenin is homologous to human von Willebrand factor. Biochem J 256: 1059–1063PubMedGoogle Scholar
  2. Beck G, Habicht GS (1986) Isolation and characterization of a primitive interleukin-l-like protein from an invertebrate, Asteria forbesi Proc Natl Acad Sci USA 83: 7429–7433PubMedCrossRefGoogle Scholar
  3. Beck G, Habicht GS (1991a) Primitive cytokines: harbingers of vertebrate defense. Immunol Today 12: 180–183PubMedCrossRefGoogle Scholar
  4. Bech G, Habicht GS (1991b). Purification and biochemical characterization of an invertebrate interleukin 1. Mol. Immunol 28: 577–584CrossRefGoogle Scholar
  5. Beck G, O’Brian RF, Habicht GS (1989) Invertebrates cytokines: the phylogenetic emergence of interleukin-1. BioEssay 11: 62–67CrossRefGoogle Scholar
  6. Bertheussen K (1979) The cytotoxic reaction in allogeneic mixtures of echinoid phagocytes. Exp Cell Res 120: 373–381PubMedCrossRefGoogle Scholar
  7. Bertheussen K (1981) Endocytosis by echinoid phagocytes in vitro I. Recognition of foreign matter. Dev Comp Immunol 5: 241–250PubMedCrossRefGoogle Scholar
  8. Bertheussen K (1983) Complement-like activity in sea urchin coelomic fluid. Dev Comp Immunol 7: 21–31PubMedCrossRefGoogle Scholar
  9. Bertheussen K (1984) Complement and lysins in invertebrates. Dev Comp Immunol 3: 173–181Google Scholar
  10. Bertheussen K, Seljelid R (1978) Echinoid phagocytes in vitro. Exp Cell Res 111: 401–412PubMedCrossRefGoogle Scholar
  11. Burke RD, Watkins RF (1991) Stimulation of starfish coelomocytes by interleukin-1. Biochem Biophys Res Commun 180: 579–584PubMedCrossRefGoogle Scholar
  12. Burnet FM (1968) Evolution of the immune process in vertebrates. Nature 218: 426–430PubMedCrossRefGoogle Scholar
  13. Canicatti C (1990a) Hemolysins: pore-forming proteins in invertebrates. Experientia 46: 239–244PubMedCrossRefGoogle Scholar
  14. Canicatti C (1990b) Lysosomal enzyme pattern in Holothuria polii coelomocytes. J Invertebr Pathol 56: 70–74CrossRefGoogle Scholar
  15. Canicatti C (1991) Binding properties of Paracentrotus lividus (Echinoidea) hemolysins. Comp Biochem Physiol 98A: 463–468CrossRefGoogle Scholar
  16. Canicatti C, D’Ancona G (1989) Cellular aspects of Holothuria polii immune response. J Invertebr Pathol 53: 152–158CrossRefGoogle Scholar
  17. Canicatti C, Miglietta A (1989) Arylsulphatase in echinoderm immunocompetent cells. Histochem J 21: 419–424PubMedCrossRefGoogle Scholar
  18. Canicatti C, Parrinello N (1982) Chromatographic separation of coelomic fluid from Holothuria polii (Echinodermata) and partial characterization of the fractions reacting with erithrocytes. Experientia 39: 764–766CrossRefGoogle Scholar
  19. Canicatti C, Rizzo A (1991) A 220 KDa coelomocyte aggregating factor involved in Holothuria polii cellular clotting. Eur J Cell Biol 56: 79–83PubMedGoogle Scholar
  20. Canicatti C, Tschopp J (1990) Holozyme A: one of the serine proteases of Holothuria polii coelomocytes. Comp Biochem Physiol 96B: 739–742Google Scholar
  21. Canicatti C, Pagliara P, Stabili L (1992) Sea urchin coelomic fluid agglutinin mediates coelomocyte adhesion. Eur J Cell Biol 58: 291–295PubMedGoogle Scholar
  22. Cervello M, Matranga V (1989) Evidence of a precursor-product relationship between vitellogenin and toposome, a glycoprotein complex mediating cell adhesion. Cell Diff Dev 26: 67–76CrossRefGoogle Scholar
  23. Cervello M, Arizza V, Lattuca G, Parrinello N, Matranga V (1994) Detection of vitellogenin in a subpopulation of sea urchin coelomocytes. Eur J Cell Biol 64: 314–319PubMedGoogle Scholar
  24. Coffaro K (1978) Clearance of bacteriophage T4 in the sea urchin Lytechinus pictus. J Invertebr Pathol 32: 384–385CrossRefGoogle Scholar
  25. Coffaro KA, Hinegardner RT (1977) Immune response in the sea urchin Lytechinus pictus. Science 197: 1389–1390PubMedCrossRefGoogle Scholar
  26. Doolittle RF (1985) The genealogy of some recently evolved vertebrate proteins. Trends Biochem Sci 10: 233–237CrossRefGoogle Scholar
  27. Doolittle RF, Riley MR (1990) The ammino terminal sequence of lobster fibrinogen reveals common ancestry with vitellogenins. Biochem Biophys Res Commun 167: 16–19PubMedCrossRefGoogle Scholar
  28. Edds KT (1985) Morphological and cytoskeletal transformation in sea urchin coelomocytes. In: Cohen WD (ed) Blood cells of marine invertebrates: experimental systems in cell biology and comparative physiology, A R Liss, New York, pp 53–74Google Scholar
  29. Gerardi P, Lassegues M, Canicatti C (1990) Cellular distribution of sea urchin antibacterial activity. Biol Cell 70: 153–157CrossRefGoogle Scholar
  30. Goldschmidt-Clermont P, Machesky L, Doberstein S, Pollard T (1991) Mechanism of the interaction of human platelet profiUn with actin. J Cell Biol 113: 1081–1089PubMedCrossRefGoogle Scholar
  31. Gratwohl EK, Kellenberg ME, Lorand L, Noll H (1991) Storage, ultrastruetural targeting and function of toposomes and hyalin in sea urchin embryogenesis. Mech Dev 33: 127–138PubMedCrossRefGoogle Scholar
  32. Hilgard HR, Phillips JH (1968) Sea urchin response to foreign substances. Science 161: 1243–1245PubMedCrossRefGoogle Scholar
  33. Ito T, Matsutani T, Mori K, Nomura T (1992) Phagocytosis and hydrogen peroxide production by phagocytes of the sea urchinStrongylocentrotus nudus. Dev Comp Immunol 16: 287–294PubMedCrossRefGoogle Scholar
  34. Johnson PT (1969) The coelomic elements of sea urchins (Strongylocentrotus) III. In vitro reaction to bacteria. J Invertebr Pathol 13: 42–62PubMedCrossRefGoogle Scholar
  35. Johnson PT, Chien PK, Chapman FA (1970) The coelomic elements of sea urchins (Strongylocentrotus) IV. Ultrastructure of leukocytes exposed to bacteria. J Invertebr Pathol 16: 466–469PubMedCrossRefGoogle Scholar
  36. Jolles J, Jolles P (1975) The lysozyme from Asterias rubens. Eur J Biochem 54: 19–23PubMedCrossRefGoogle Scholar
  37. Kanungo K (1982) In vitro studies on the effect of cell-free coelomic fluid, calcium, and/or magnesium on clumping of coelomocytes of the sea star Asteria forbesi. Biol Bull 163: 438–452CrossRefGoogle Scholar
  38. Leclerc M, Bajelan M (1992) Homologous antigen for T cell receptor in axial organ cells from the asterid Asterias rubens. Cell Biol Int Rep 16: 487–490PubMedCrossRefGoogle Scholar
  39. Leonard LA, Strandberg JD, Winkelstein JA (1990) Complement-like activity in the sea starAsterias forbesi. Dev Comp Immunol 14: 19–30PubMedCrossRefGoogle Scholar
  40. Masson D, Tschopp J (1985) Isolation of a lytic, pore-forming protein (perforin) from cytolytic T- lymphocytes. J Biol Chem 260: 9069–9072PubMedGoogle Scholar
  41. Matranga V, Kuwasaki B, Noll H (1986) Functional characterization of toposome from sea urchin blastula embryos by a morphogenetic cell aggregation assay. EMBO J 5: 3125–3132PubMedGoogle Scholar
  42. Matranga V, Di Ferro D, Cervello M, Zito F, Nakano E (1991) Adhesion of sea urchin embryonic cells to substrata coated with cell adhesion molecules. Biol Cell 71: 289–191CrossRefGoogle Scholar
  43. Matsunaga T, Mori (1987) The origin of immune system. Scand J Immunol 25: 485–495PubMedCrossRefGoogle Scholar
  44. Matthew S, Wardlaw AC (1984) Echinochrome-A as a bactericidal substance in the coelomic fluid of Echinus esculentus. Comp Biochem Physiol 79B: 161–165Google Scholar
  45. McDonald GD, Davidson L, Kitto GB (1992) Amino acid sequence of the coelomic C globin from the sea cucumber Caudina (Molpadia arenicola. J Protein Chem 11: 29–37PubMedCrossRefGoogle Scholar
  46. Millott N (1969) Injury and the axial organ of echinoids. Experientia 25: 756CrossRefGoogle Scholar
  47. Noll H, Matranga V, Cervello M, Humphreys T, Kuwasaki B, Adelson D (1985) Characterization of toposomes from sea urchin blastula cells: a cell organelle mediating cell adhesion and expressing positional information. Proc Natl Acad Sci USA 82: 8062–8066PubMedCrossRefGoogle Scholar
  48. Pagliara P, Canicatti C (1993) Isolation of coelomocyte granules from sea urchin amoebocytes. Eur J Cell Biol 60: 179–184PubMedGoogle Scholar
  49. Parrinello N, Ridone D, Canicatti C (1979) Naturally occurring hemolysins in the coleomic fluid of Holothuria polii. Dev Comp Immunol 3: 45–54PubMedCrossRefGoogle Scholar
  50. Plytcz B, Seljelid R (1993) Bacterial clearance by the sea urchin Strongylocentrous droebachiensis. Dev Comp Immunol 17: 283–289CrossRefGoogle Scholar
  51. Prendergast R, Suzuki M (1970) Invertebrate protein stimulating mediators of delayed hypersensitivity. Nature 227: 277–279PubMedCrossRefGoogle Scholar
  52. Prendergast RA, Lutty GA, Scott AL (1983) Directed inflammation: the phylogeny of lymphokines. Dev Comp Immunol 7: 629–632CrossRefGoogle Scholar
  53. Raftos DA, Cooper EL (1991) Proliferation of lymphocyte-like cells from the solitary tunicate, Stlyla clava, in response to allogeneic stimuli. J Exp Zool 260: 391–400PubMedCrossRefGoogle Scholar
  54. Raison RL, Hull CJ, Hildemann WH (1978) Characterization of immunoglobulin from the Pacific hagfish, a primitive vertebrate. Proc Natl Acad Sci USA 75: 5679–5682PubMedCrossRefGoogle Scholar
  55. Ratacliffe NA, Rowley AF (1979) A comparative synopsis of the structure and function of the blood cells of insects and other invertebrates. Dev Comp Immunol 3: 189–243CrossRefGoogle Scholar
  56. Reinisch CL, Bang FB (1971) Cell recognition: reaction of the sea star(Asterias vulgaris) to the injection of amoebocytes of sea urchin (Arbacia punctulata). Cell Immunol 2: 496–503PubMedCrossRefGoogle Scholar
  57. Rogers J (1985) Exon shuffling and intron insertion in serine protease genes. Nature 315: 458–459PubMedCrossRefGoogle Scholar
  58. Ryoyama K (1973) Studies on the biological properties of coelomic fluid of sea urchin. I Natrually occurring hemolysins. Biochim Biophys Acta 320: 157–165PubMedGoogle Scholar
  59. Ryoyama K (1974) Studies on the biological properties of coelomic fluid of sea urchin. II Naturally occurring hemagglutinin in sea urchin. Biol Bull 146: 404–414PubMedCrossRefGoogle Scholar
  60. Smith LC, Davidson EH (1992) The echinoid immune system and the phylogenetic occurence of immune mechanisms in deuterostomes. Immunol today 13: 356–362PubMedCrossRefGoogle Scholar
  61. Smith LC, Britten RJ, Davidson EH (1992) SpCoell: a sea urchin profilin gene expressed specifically in coelomocytes in response to injury. Mol Biol Cell 3: 403–414PubMedGoogle Scholar
  62. Smith VJ (1981) The echinoderms. In: Ratcliffe NA, Rowley AT (eds) Invertebrate Blood Cells. Vol 2. Academic Press, LondonGoogle Scholar
  63. Yui MA, Bayne CJ (1983) Echinoderm immunology: bacterial clearance by the sea urchin Strongylo-centrotus purpuratus. Biol Bull 165: 473–486CrossRefGoogle Scholar
  64. Wardlaw AC, Unkless SE (1978) Bactericidal activity of coelomic fluid from the sea urchin Echinus esculentus. J Invertebr Pathol 32: 25–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • V. Matranga
    • 1
  1. 1.Istituto Di Biologia dello SviluppoConsiglio Nazionale Delle RicerchePalermoItaly

Personalised recommendations