Humoral Factors in Marine Invertebrates

  • M. Leclerc
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 15)


Lymphoid organs in Crustacea and Insecta were first discovered by L. Cuénot between 1890 and 1910. For many years, however, little research was done into the immune processes of invertebrates (which represent 95% of animal species), as it was assumed that with a short life-span and a high rate of reproduction, a complex and highly efficient immune system was not required.


Humoral Factor Migration Inhibition Factor Marine Invertebrate Coelomic Fluid Coelomic Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bang FB (1982) Disease processes in seastars: a metchnikovian challenge. Biol Bull 162: 135–148CrossRefGoogle Scholar
  2. Beck G, Habicht GS (1986) Isolation and characterization of a primitive interleukin-l-like protein from an invertebrate Asterias forbesi. Proc Natl Acad Sci USA 83: 1–5CrossRefGoogle Scholar
  3. Beck G, Habicht GS (1991) Primitive cytokines habingers of vertebrate defense. Immunol Today 87: 180–183CrossRefGoogle Scholar
  4. Beck G, Vasta GR, Marchalonis J J, Habicht GS (1989a) Characterization of interleukin-1 activity in tunicates. Comp Biochem Physiol 92B: 93–98Google Scholar
  5. Beck G, O’Brien R, Habicht GS (1989b) Invertebrate cytokines: the phylogenetic emergence of interleukin-1. Bio Essays 11: 62–67Google Scholar
  6. Bertheussen K (1982) Receptors for complement on echinoid phagocytes. II. Purified human complement mediates echinoid phagocytosis. Dev Comp Immunol 6: 635–642PubMedGoogle Scholar
  7. Bertheussen K (1983) Complement-like activity in sea urchin coelomic fluid. Dev Comp Immunol 7: 21–31PubMedCrossRefGoogle Scholar
  8. Bertheussen K (1984) Complement-like activity in sea urchin coelomic fluid. Dev Comp Immunol 7: 21–31CrossRefGoogle Scholar
  9. Bertheussen K, Seljelid R (1978) Echinoid phagocytes in vitro. Exp Cell Res 11: 401–412CrossRefGoogle Scholar
  10. Brillouet C, Leclerc M, Panijel J, Binaghi RA (1981) In vitro effect of various mitogens on starfish (Asterias rubens) axial organ cells. Cell Immunol 57: 136–144PubMedCrossRefGoogle Scholar
  11. Buss LW, Green DR (1985) Histocompatibility in vertebrates: the relict hypothesis. Dev Comp Immunol 9: 191–201PubMedCrossRefGoogle Scholar
  12. Canicatti C (1987) Evolution of the lytic system in echinoderms. Naturally occurring hemolytic activity inParacentrotus lividus (Eehinoidea) coelomic fluid. Boll Zool 4: 325–329CrossRefGoogle Scholar
  13. Canicatti C (1988) The lytic system of Holothuria polii (Echinodermata): a review. Boll Zool 55: 139–144CrossRefGoogle Scholar
  14. Canicatti C (1989) Evolution of the lytic system in echinoderms. II. Naturally occurring hemolytic activity in Marthasterias glacialis (Asteroidea) coelomicfluid. Comp Biochem Physiol 93A: 587–591CrossRefGoogle Scholar
  15. Canicatti C (1990) Hemolysins: pore-forming proteins in invertebrates. Experientia 46: 239–244PubMedCrossRefGoogle Scholar
  16. Canicatti C, Roch PH (1989) Studies on Holothuria polii (Echinoderma) antibacterial proteins. I. Evidence for and activity of coelomocyte lysozyme. Experientia 45: 756–759CrossRefGoogle Scholar
  17. Cooper EL (1979) L’évolution de l’immunité. Recherche 103: 824–833Google Scholar
  18. Cooper EL (1985) Overview of humoral factors in invertebrates. Dev Comp Immunol 9: 577–583PubMedCrossRefGoogle Scholar
  19. Cooper EL (1986) Evolution of histoincompatibility. In: Brehélin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York, pp 139–149CrossRefGoogle Scholar
  20. Day NKB, Geiger H, Finstad H, Good RA (1972) A starfish hemolymph factor which activates vertebrate complement in the presence of cobra venom factor. J Immunol 109: 164–167PubMedGoogle Scholar
  21. Delmotte F, Brillouet C, Leclerc M, Luquet G, Kader JC (1986) Purification of an antibody-like protein from the sea star Asterias rubens (L.). Eur J Immunol 16: 1325–1330PubMedCrossRefGoogle Scholar
  22. Donnely JJ, Vogel SN, Prendergast RA (1985) Down regulation of la expression on macrophages by the sea star factor. Cell Immunol 90: 408–415CrossRefGoogle Scholar
  23. Du Pasquier L, Duprat P (1968) Aspects humoraux et cellulaires d’une immunité naturelle non spécifique chez l’oligochète Eisenia foetida Sav. (Lumbricinae). CR Acad Sci Paris 266: 538–541Google Scholar
  24. Durham F (1988) On the emigration of ameboid corpuscles in the starfish. Proc R Soc Lond B43: 328–330Google Scholar
  25. Edelman GM (1987) CAMs and Igs: cell adhesion and the evolutionary origins of immunity. Immubol Rev 100: 11–45CrossRefGoogle Scholar
  26. Hildemann WH (1974) Some new concepts in immunological phylogeny. Nature 250: 116–120PubMedCrossRefGoogle Scholar
  27. Hildemann WH, Dix TG (1972) Transplantation reactions of tropical Australian echinoderms. Transplantation 15: 624–633CrossRefGoogle Scholar
  28. Hildemann WH, Raison RL, Cheung G, Hull CJ, Akaka L, Okamoto J (1977) Immunological specificity and memory in a scleractinian coral. Nature 270: 219–223PubMedCrossRefGoogle Scholar
  29. Klein J (1989) Are invertebrates capable of anticipatory immune responses? Scand J Immunol 29: 499–505PubMedCrossRefGoogle Scholar
  30. Kobayashi M, Johansson MW, Söderhäll K (1990) The 76 kD cell-adhesion factor from crayfish haemocytes promotes encapsulation in vitro. Cell Tissue Res 260: 13–18CrossRefGoogle Scholar
  31. Leclerc M (1973) Etude ultrastructurale des reactions d’Asterina Gilbbosa (Echinoderme Ästende) au niveau de l’organe axial après injection de protéines. Ann Immunol 124 C: 363–374Google Scholar
  32. Leclerc M, Brillouet C (1981) Evidence of antibody-like substances secreted by axial organ cells of the starfish Asterias rubens. Immunol Lett 2: 279–281CrossRefGoogle Scholar
  33. Leclerc M, Brillouet C, Luquet G, Agogué P, Binaghi RA (1981) Properties of cell subpopulations of starfish axial organ: in vitro effect of pokeweed mitogen and evidence of lymphokine-like substances. Scand J Immunol 14: 281–284PubMedCrossRefGoogle Scholar
  34. Leclerc M, Brillouet C, Luquet G, Binaghi RA (1986) Production of an antibody-like factor in the seastar Asterias rubens: involvement of at least three cellular populations. Immunology 57: 479–482PubMedGoogle Scholar
  35. Leclerc M, Arneodo V, Legac E, Bajelan M, Vaugier G (1983) Identification of T like and B like lymphocyte subsets in sea star Asterias rubens by monoclonal antibodies to human leucocytes. Thymus 21: 133–139Google Scholar
  36. Leonard LA, Stranberg JD, Winkelstein JA (1990) Complement-like activity in the sea star, Asterias forbesi. Dev Comp Immunol 14: 19–30PubMedCrossRefGoogle Scholar
  37. Luquet G, Brillouet C, Leclerc M (1984) M.L.R.-like reaction between axial organ cells from asterids. Immunol Lett 7: 235–238PubMedCrossRefGoogle Scholar
  38. Mansour MH, Cooper EL (1984) Serological and partial molecular characterization of a Thy-1 homolog, in tunicates. Eur J Immunol 14: 1031–1039PubMedCrossRefGoogle Scholar
  39. Mansour MH, Cooper EL (1987) Tunicate Thy-1. An invertebrate member of the Ig superfamily. In: Cooper EL, Langlet C, Bierne J (eds) Progress in clinical and biological research, vol 233. Developmental and comparative immunology. Alan R Liss, New York, pp 33–42Google Scholar
  40. Mansour MH, De Lange R, Cooper EL (1985) Isolation, purification and amino acid composition of the tunicate hemocyte Thy-1 homolog. J Biol Chem 260: 2681–2686PubMedGoogle Scholar
  41. Marchalonis J J, Schlüter SF (1990) On the relevance of invertebrate recognition and defence mechanisms to the emergence of the immune response of vertebrates. Scand J Immunol 32: 13–20PubMedCrossRefGoogle Scholar
  42. Marchalonis JJ, Vasta GR, Warr GW, Barker WC (1984) Probing the boundaries of the extended immunoglobulin family of recognition molecules: jumping domains, convergence and minigenes. Immunol Today 5: 133–142CrossRefGoogle Scholar
  43. Metchnikoff E (1891) Lectures on the comparative pathology of inflammation. Dover Publ., New York (transi 1968 by Starling FA, Starling EH, Keagan, Trench, Trubuer, London)Google Scholar
  44. Panijel J, Leclerc M, Redziniak G, El Lababidi M (1977) Specific reactions induced in vertebrates by sea star axial organ cells. In: Solomon JB, Horton JD (eds) Developmental immunobiology. Elsevier, Amsterdam, pp 91–97Google Scholar
  45. Parrinello N, Rindone D, Canicatti C (1979) Naturally occurring hemolysins in the coelomic fluid of Holuthuria polii Delle Chiaje (Echinodermata). Dev Comp Immunol 3: 45–54PubMedCrossRefGoogle Scholar
  46. Pia M, Shalev A (1983) Déterminants chez les invertébrés, analogues aux antigènes du complexe majeur d’histocompatibilité. Bull Inst Pasteur (Paris) 81: 273–275Google Scholar
  47. Prendergast RA (1970) Macrophage activating and chemotactic factor from the sea star Asterias forbesi. Fed Proc 29: 647Google Scholar
  48. Prendergast RA, Liu SH (1976) Isolation and characterization of sea star factor. Scand J Immunol 5: 873–880PubMedCrossRefGoogle Scholar
  49. Prendergast RA, Suzuki M (1970) Invertebrate protein simulating mediators of delayed hypersensitivity. Nature 227: 277–279PubMedCrossRefGoogle Scholar
  50. Prendergast RA, Unanue ER (1970) Macrophage activation and migration inhibition factor from the sea star Asterias forbesi. Fed Proc Fed Am Soc Exp Biol 29: 771Google Scholar
  51. Prendergast RA, Cole GA, Henney CS (1974) Marinein vertebrate origin of a reactant to mammalian T cells. Ann NY Acad Sci 234: 7–16PubMedCrossRefGoogle Scholar
  52. Reinisch GL, Litman GW (1989) Evolutionary immunobiology. Immunol Today 10: 278–281PubMedCrossRefGoogle Scholar
  53. Rosenshein IL, Schluter SF, Vasta GR, Marchalonis J J (1985) Phylogenetic conservation of heavy chain determinants of vertebrates and protochordates. Dev Comp Immunol 9: 783–795PubMedCrossRefGoogle Scholar
  54. Ryoyama K (1973) Studies on the biological properties of coelomic fluid of sea urchin. I. Naturally occurring hemolysin in sea urchin. Biochim Biophys Acta 320: 157–165PubMedCrossRefGoogle Scholar
  55. Ryoyama K (1974) Studies on the biological properties of coelomic fluid of sea urchin II. Naturally occurring hemagglutinin in sea urchin. Biol Bull 146: 404–414PubMedCrossRefGoogle Scholar
  56. Sehmit AR, Ratcliffe NA (1977) The encapsulation of foreign tissue implants in Galleria mellonella larvae. Insect Physiol 23: 175–184CrossRefGoogle Scholar
  57. Scofield VL, Schlumberger JM, West LA, Weissman IL (1982) Protochordate allorecognition is controlled by a MHC-like gene system. Nature 295: 499–502PubMedCrossRefGoogle Scholar
  58. Shalev A, Greenberg AH, Lögdberg L, Björck L (1981) β2-Microglobulin-like molecules in low vertebrates and invertebrates. Immunology 127: 1186–1191Google Scholar
  59. Sims JE, March CJ, Cosman D, Widmer MB, MacDonald HR, McMahan CJ, Grubin CE, Wignall JM, Jackson JL, Call SM, Friend D, Alpaert AR, Gillis S, Urdal DL, Dower SK (1988) cDNA expression and cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 241: 585–589PubMedCrossRefGoogle Scholar
  60. Sminia T, Van der Knaap WPW (1987) The forgotten creatures: immunity in invertebrates. In: Cooper EL, Langlet C, Bierne J (eds) Progress in clinical and biological research, vol 233. Developmental and comparative immunology. Alan R Liss, New York, pp 157–162Google Scholar
  61. Tanaka K (1975) Allogeneic distinction in Botryllus primigenus and in other colonial ascidians. Adv Exp Med Biol 64: 115–124PubMedGoogle Scholar
  62. Theodor JL (1970) Dinstinction between “self” and “not-self” in lower invertebrates. Nature 227: 690–692PubMedCrossRefGoogle Scholar
  63. Voisin GA (1983) Réflexions sur l’immunologie comparée. Bull Inst Pasteur (Paris) 81: 277–279Google Scholar
  64. Warr GW, Decker JM, Mandel TE, De Luca D, Hudson R, Marchalonis J J (1977) Lymphocyte-like cells of the tunicate Pyura stolonifera: binding of lectins, morphological and functional studies. Aust J Exp Biol Med Sci 55: 151–164PubMedCrossRefGoogle Scholar
  65. Warr GW (1985) Beta 2 microglobulins: a brief comparative review. Dev Comp Immunol 9: 769–775PubMedCrossRefGoogle Scholar
  66. Willenborg DO, Prendergast RA (1974) The effect of sea star coelomocyte extract on cell-mediated resistance to Listeria monocytogenes in mice. J Exp Med 139: 820–833PubMedCrossRefGoogle Scholar
  67. Williams AF, Barclay AN (1988) The immunoglobulin superfamily — domains for cell surface recognition. Annu Rev Immunol 6: 381–406PubMedCrossRefGoogle Scholar
  68. Williams AF, Gagnon J (1982) Neuronal cell Thy-1 glycoprotein: homology with immunoglobulin. Science 216: 696–703PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • M. Leclerc
    • 1
  1. 1.Immunologie des Invertébrés, UFR SciencesUniversité d’OrléansFrance

Personalised recommendations