Skip to main content

Mechanisms of Antigen Processing in Invertebrates: Are There Receptors?

  • Chapter

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 23))

Abstract

The ability to recognize self and non-self exists in all animal species. Unicellular animals, such as protozoans, which often engulf living microorganisms, must discriminate between them and nutrition proteins, to prevent damage to their own proteins during digestive processes. The mechanism of discrimination at this level is unknown. One can assume that the specificity is based on substrate specificity of the proteolytic enzymes (Valembois et al. 1973; Ratcliffe et al. 1984, 1991; Tučková etal. 1986a). The main defense mechanisms in multicellular invertebrates are certainly represented by innate factors. Microorganisms that break the outer protective barrier and invade the host are mainly eliminated by phagocytosis which can be potentiated by humoral factors. Moreover, body fluids (e.g. hemolymph, celomic fluid) contain antibacterial molecules that probably prevent the multiplication of these bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso-Bedate M, Sequeros E (1985) Suggested regulatory mechanisms for caudal regeneration in Allolobophora molleri (Annelida;Oligochaeta). Comp Biochem Physiol 81 A: 225–228

    Google Scholar 

  • Anderson RS (1980) Antibacterial activity in the coelomic fluid of a polychaete annelid, Glycera dibranchiata. Biol Bull 159: 259–268

    Google Scholar 

  • Anderson RS, Chain BM (1982) Antibacterial activity in the coelomic fluid of a marine annelid Glycera dibranchiata. J Invertebr Pathol 40: 320–326

    Google Scholar 

  • Ando K, Natori S (1988) Molecular cloning, sequencing, and characterization of cDNA for Sarcotoxin IIA, an inducible antibacterial protein of Sarcophaga peregrina (flesh fly). Biochemistry 27: 1715–1721

    PubMed  CAS  Google Scholar 

  • Ashida M, Yoshida H (1988) Limited proteolysis of prophenoloxidase during activation by microbial products in insect plasma and effect of phenoloxidase on electrophoretic mobilities of plasma proteins. Insect Biochem 18: 11–19

    CAS  Google Scholar 

  • Baba K, Okada M, Kawano T, Komano H, Natori S (1987) Purification of Sarcotoxin III, a new antibacterial protein of Sarcophaga peregrina. J Biochem 102: 69–74

    PubMed  CAS  Google Scholar 

  • Banerjee A, Datta PK, Basu PS, Datta TK (1991) Characterization of a naturally occurring protease inhibitor in the hemolymph of the scorpion, Heterometrus bengalensis. Dev Comp Immunol 15: 213–218

    PubMed  CAS  Google Scholar 

  • Bang FB (1973) A survey of phagocytosis as a protective mechanism against disease among invertebrates. In: Braun W, Unger J (eds) Non-specific factors influencing host resistance. Karger, Basel, pp 2–10

    Google Scholar 

  • Bilej M, Větvička V, Tučková L, Trebichavsky I, Koukal M, Šima P (1990a) Phagocytosis of synthetic particles in earthworms. Effect of antigenic stimulation and opsonization. Folia Biol (Prague) 36: 273–280

    CAS  Google Scholar 

  • Bilej M, Tučková L, Rejnek J, Větvička V (1990b) In vitro antigen-binding properties of coelomocytes of Eisenia foetida ( Annelida ). Immunol Lett 26: 183–188

    PubMed  CAS  Google Scholar 

  • Bilej M, Scheerlinck JP, VandenDriessche T, De Baetselier P, Větvička V (1991a) The flow cytometric analysis of in vitro phagocytic activity of earthworm coelomocytes (Eisenia foetida; Annelida ). Cell Biol Int Rep 14: 831–837

    Google Scholar 

  • Bilej M, De Baetselier P, Trebichavsky I, Větvička V (1991b) Phagocytosis of synthetic particles in earthworms: absence of oxidative burst and possible role of lytic enzymes. Folia Biol (Prague) 37: 227–233

    CAS  Google Scholar 

  • Bilej M, Rossmann P, VandenDriessche T, Scheerlinck JP, De Baetselier P, Tučková L, Větvička V, Rejnek J (1991c) Detection of antigen in the coelomocytes of the earthworm Eisenia foetida ( Annelida ). Immunol Lett 29: 241–246

    PubMed  CAS  Google Scholar 

  • Bilej M, Šima P, Slipka J (1992a) Repeated antigenic challenge induces earthworm celomocyte proliferation. Immunol Lett 32: 181–184

    PubMed  CAS  Google Scholar 

  • Bilej M, Rejnek J, Tučková L (1992b) The interaction of staphylococcal protein A with free coelomocytes of annelids. Cell Biol Int Rep 16: 481–485

    PubMed  CAS  Google Scholar 

  • Bilej M, Tučková L, Rejnek J (1993) The fate of protein antigen in earthworms: study in vitro. Immunol Lett 35: 1–6

    PubMed  CAS  Google Scholar 

  • Bilej M, Tučková L, Rossmann P (1994) A new approach to in vitro studies of antigenic response in earthworms. Dev Comp Immunol 18: 363–367

    PubMed  CAS  Google Scholar 

  • Boman HG, Steiner H (1981) Humoral immunity in cecropia pupae. Curr Top Microbiol Immunol 94 /95: 75–89

    PubMed  Google Scholar 

  • Boman HG, Faye I, v. Hofstein P, Kockum K, Lee JY, Xanthopoulos KG (1985) On the primary structures of lysozyme, cecropins and attacins from Hyalophora cecropia. Dev Comp Immunol 9: 551–558

    PubMed  CAS  Google Scholar 

  • Cameron GR (1932) Inflammation in earthworms. J Pathol 35: 933–972

    Google Scholar 

  • Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J 8: 2387–2391

    PubMed  CAS  Google Scholar 

  • Chain BM, Anderson RS (1983a) Antibacterial activity of the coelomic fluid of the polychaete, Glycera dibranchiata. I. The kinetics of the bactericidal reaction: Biol Bull 164: 28–40

    Google Scholar 

  • Chain BM, Anderson RS (1983b) Antibacterial activity of the coelomic fluid of the polychaete, Glycera dibranchiata. II. Partial purification and biochemical characterization of the active factor. Biol Bull 164: 41–49

    CAS  Google Scholar 

  • Cooper EL (1965) Rejection of body-wall xenograft exchanged between Lumbricus terrestris and Eisenia foetida Am Zool 5: 665

    Google Scholar 

  • Cooper EL (1970) Transplantation immunity in helminths and annelids. Transplant Proc 2: 216–221

    PubMed  CAS  Google Scholar 

  • Cooper EL (1973) Evolution of cellular immunity. In: Braun W, Unger J (eds) Non-specific factors influencing host resistance. Karger, Basel, pp 11–23

    Google Scholar 

  • Cooper EL, Roch P (1986) Second-set allograft responses in the earthworm Lumbricus terrestris. Kinetics and characteristics. Transplantation 41: 514–520

    PubMed  CAS  Google Scholar 

  • Cooper EL, Stein EA (1981) Oligochaetes. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol 1. Academic Press, London, pp 75–140

    Google Scholar 

  • Cooper EL, Acton RT, Weinheimer PF, Evans EE (1969) Lack of bacteriocidal response in the earthworm Lumbricus terrestris after immunization wtih bacterial antigens. J Invertebr Pathol 14: 402–406

    PubMed  CAS  Google Scholar 

  • Çotuk A, Dales RP (1984a) The effect of the coelomic fluid of the earthworm Eisenia foetida Sav. on certain bacteria and the role of the coelomocytes in the internal defence. Comp Biochem Physiol 78A: 271–275

    Google Scholar 

  • Çotuk A, Dales RP (1984b) Lysozyme activity in the coelomic fluid and coelomocytes of the earthworm Eiseniafoetida Sav. in relation to bacterial infection. Comp Biochem Physiol 78 A: 469–474

    Google Scholar 

  • Dales RP, Dixon LJR (1980) Responses of polychaete annelids to bacterial infection. Comp Biochem Physiol 67A: 391–396

    Google Scholar 

  • Dales RP, Kalaç Y (1992) Phagocytic defence by the earthworm Eisenia foetida against certain pathogenic bacteria. Comp Biochem Physiol 101A: 487–490

    Google Scholar 

  • Faulhaber LM, Karp RD (1991) A diphasic immune response against injected bacteria in the American cockroach. Dev Comp Immunol (Suppl) 1: 47

    Google Scholar 

  • Golding DW (1974) Regeneration and growth control in Nereis. III. Separation of wound healing and segment regeneration by experimental endocrine manipulation. J Embryol Exp Morphol 32: 99–109

    PubMed  CAS  Google Scholar 

  • Gotz P, Trenczek T (1991) Antibacterial proteins in insects other than Lepidoptera and Diptera and some other invertebrates. In: Gupta AP (ed) Immunology of insects and other arthropods. CRC Press, Boca Raton, pp 323–346

    Google Scholar 

  • Goudswaard J, van der Dponk JA, Noordzig A, van Dam RH, Vaerman JP (1978) Protein A reactivity of various mammalian immunoglobulins. Scand J Immunol 8: 21–28

    PubMed  CAS  Google Scholar 

  • Herlant-Meewis H (1966) Les cellules neurosecretrices de la chaine nerveuse d’Eisenia foetida. Z Zellforsch 69: 319–325

    PubMed  CAS  Google Scholar 

  • Herlant-Meewis H, Deligne J (1964) Regeneration in annelids. In: Abercrombie M, Brachet J (eds) Advances in morphogenesis, vol 4. Academic Press, New York, pp 155–215

    Google Scholar 

  • Hildemann WH (1981) Immunophylogeny: from sponges, to hagfish to mice. In: Hildemann WH (ed) Frontiers in immunogenetics. Elsevier, Amsterdam, pp 3–19

    Google Scholar 

  • Hirigoyenberry F, Lassalle F, Lassègues M (1990) Antibacterial activity of Eiseniafetida Andrei coelomic fluid: transcription and translation regulation of lysozyme and proteins evidenced after bacterial infestation. Comp Biochem Physiol 95B: 71–75

    CAS  Google Scholar 

  • Hrženjak T, Hrzenjak M, Kašuba V, Efenberger-Marinculic P, Levanat S (1992) A new source of biologically active compounds-earthworm tissue (Eisenia foetida, Lumbricus rubellus). Comp Biochem Physiol 102A: 441–447

    Google Scholar 

  • Jackson AD, Smith VJ, Peddie CM (1993) In vitro phenoloxidase activity in the blood of Ciona intestinalis and other ascidians. Dev Comp Immunol 17: 97–108

    PubMed  CAS  Google Scholar 

  • Janda V, Bohuslav P (1934) Sur l’explantation du tissu de la paroi intistinale et des amibocytes de Lumbricus terrestris L. et des cellules d’epithelium intestinal d’Anodonta cygnea L. Publ Fac Sci Univ Charles 133: 1–23 (in Czech with French Summary)

    Google Scholar 

  • Janeway CA (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13: 11–16

    PubMed  CAS  Google Scholar 

  • Jolles P, Zuili S (1960) Purification et etude comparee de nouveaux lysozymes extraits du poumon de poule et de Nephthys hombergi. Biochim Biophys Acta 39: 212–217

    PubMed  CAS  Google Scholar 

  • Karp RD (1985) Preliminary characterization of the inducible humoral factor in the American cockroach (Periplaneta americana). Dev Comp Immunol 9: 569–575

    PubMed  CAS  Google Scholar 

  • Kauschke E, Mohrig W (1987) Comparative analysis of hemolytic and hemagglutinating activities in the coelomic fluid of Eisenia foetida and Lumbricus terrestris ( Annelida, Lumbricidae). Dev Comp Immunol 11: 331–342

    PubMed  CAS  Google Scholar 

  • Keilin ND (1925) Parasitic autotomy of the host as a mode of liberation of coelomic parasites from the body of the earthworm. Parasitology 17: 170–172

    Google Scholar 

  • Komano H, Kasama E, Nagasawa Y, Nakanishi Y, Matsuyama K, Ando KI, Natori S (1987) Purification of Sarcophaga (fleshfly) lectin and detection of sarcotoxins in the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. Biochem J 248: 217–222

    PubMed  CAS  Google Scholar 

  • Lambert J, Keppi E, Dimarqo JL, Wicker C, Reichhart JM, Dunbar B, Lepage P, Van Dorsselaer A, Hoffmann J, Fothergill J, Hoffmann D (1989) Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci USA 86: 262–266

    PubMed  CAS  Google Scholar 

  • Langone JJ (1982) Protein A and related receptors. Adv Immunol 32: 158–241

    Google Scholar 

  • Lassalte F, Lassègues M, Roch P (1988) Protein analysis of earthworms coelomic fluid-IV. Evidence, activity, induction and purification of Eiseniafetida andrei lysozyme ( Annelidae ). Comp Biochem Physiol 91B: 187–192

    Google Scholar 

  • Laulan A, Morel A, Lestage J, Delaage M, Chateaureynaud-Duprat P (1985) Evidence of synthesis by Lumbricus terrestris of specific substance in response to an immunization with a synthetic hapten. Immunology 56: 751–758

    PubMed  CAS  Google Scholar 

  • Laulan A, Lestage J, Bouc AM, Chateaureynaud-Duprat P (1988) The phagocytic activity of Lumbricus terrestris coelomocytes is enhanced by the vertebrate opsonins: IgG and complement C3b fragment. Dev Comp Immunol 12: 269–278

    PubMed  CAS  Google Scholar 

  • Leipner C, Tučková L, Rejnek J, Langner J (1993) Serine proteases in coelomic fluids of annelidsEisenia foetida and Lumbricus terrestris. Comp Biochem Physiol 105B: 637–641

    Google Scholar 

  • Marchalonis J, Atwell JL, Goding JW (1978) 7S immunoglobulins of monotreme, the Echidna Tachyglossus acutaetus: two distinct isotypes which bind A protein of Staphylococcus aureus. Immunology 34: 97–103

    PubMed  CAS  Google Scholar 

  • Metchnikoff EE (1887) Sur la lutte des cellules de Forganisme contre l’invasion des microbes. Ann Inst Pasteur 1: 322–340

    Google Scholar 

  • Mihara H, Sumi H, Yoneta T, Mizumoto H, Ikeda R, Seiki M, Maruyama M (1991) A novel fibrinolytic enzyme extracted from the earthworm Lumbricus rubellus. Jpn J Physiol 41: 461–472

    PubMed  CAS  Google Scholar 

  • Mohrig W, Kauschke E, Ehlers M (1984) Rosette formation of the coelomocytes of the earthworm Lumbricus terrestris L. with sheep erythrocytes. Dev Comp Immunol 8: 471–476

    PubMed  CAS  Google Scholar 

  • Nagasawa H, Sawaki K, Fujii Y, Kobayashi M, Segawa T, Suzuki R, Inatomi H (1991) Inhibition by lombricine from earthworm (Lumbricus terrestris) of the growth of spontaneous mammary tumours in SHN mice. Anticancer Res 11: 1061–1064

    PubMed  CAS  Google Scholar 

  • Olive PJW (1974) Cellular aspects of regeneration influence in Nereis diversicolor. J Embryol Exp Morphol 32: 111–131

    PubMed  CAS  Google Scholar 

  • Perin JP, Jolles P (1972) The lysozyme from Nephthys hombergi (annelid). Biochim Biophys Acta 263: 683–689

    PubMed  CAS  Google Scholar 

  • Peucellier G (1983) Purification and characterization of proteases from the polychaete annelid Sabellaria alveolata. Eur J Biochem 136: 435–445

    Google Scholar 

  • Porchet-Hennere E, M’Berri M (1987) Cellular reaction of the polychaete annelid Nereis diversicolor against coelomic parasites. J Invertebr Pathol 50: 58–66

    Google Scholar 

  • Ratcliffe NA, Leonard C, Rowley AF (1984) Prophenoloxidase activation: nonself recognition and cell cooperation in insect immunity. Science 226: 557–559

    PubMed  CAS  Google Scholar 

  • Ratcliffe NA, Rowley AF, Fitzgerald SW, Rhodes CP (1985) Invertebrate immunity: basic concepts and recent advances. Int Rev Cytol 97: 183–349

    CAS  Google Scholar 

  • Ratcliffe NA, Brookman JL, Rowley AF (1991) Activation of the prophenoloxidase in locusts by bacterial lipopolysaccharides. Dev Comp Immunol 15: 33–39

    PubMed  CAS  Google Scholar 

  • Rejnek J, Tučková L, Šima P, Kostka J (1986) The proteins in Lumbricus terrestris and Eisenia foetida coelomic fluids and on coelomocytes reacting with sheep and goat IgG molecules. Dev Comp Immunol 10: 467–475

    Google Scholar 

  • Rejnek J, Tučková L, Zikan J, Tomana M (1991) The interaction of a protein from the coelomic fluid of earthworms with staphylococcal protein A. Dev Comp Immunol 15: 269–277

    PubMed  CAS  Google Scholar 

  • Rejnek J, Tučková L, Šima P, Bilej M (1993) The fate of protein antigen in earthworms: study invivo. Immunol Lett 36: 131–136

    PubMed  CAS  Google Scholar 

  • Richman DD, Cleveland PH, Oxman MN, Johnson KM (1982) The binding of staphylococcal protein A by the sera of different species. J Immunol 128: 2300–2305

    PubMed  CAS  Google Scholar 

  • Roch P (1977) Reactavite in vitro des leucocytes du lombricien Eisenia fetida Sav. a quelques substance mitogeniques. CR Acad Sci Ser D 284: 705–712

    CAS  Google Scholar 

  • Roch P (1979) Protein analysis of earthworm coelomic fluid: I-polymorphic system of the natural hemolysin of Eisenia fetida andrei. Dev Comp Immunol 3: 599–608

    PubMed  CAS  Google Scholar 

  • Roch P, Cooper EL (1983) A β2-microglobulin-like molecule on earthworm (L. terrestris) leukocyte membranes. Dev Comp Immunol 7: 633–636

    CAS  Google Scholar 

  • Roch P, Valembois P, Du Pasquier L (1975) Response of earthworm leukocytes to concanavalin A and transplantation antigens. In: Hildemann WH, Benedict AA (eds) Immunologic phylogeny. Plenum Press, New York, pp 45–54

    Google Scholar 

  • Roch P, Valembois P, Davant N, Lassègues M (1981) Protein analysis of earthworm coelomic fluid. II. Isolation and biochemical characterisation of the Eisenia fetida andrei factor ( EFAF ). Comp Biochem Physiol 69B: 829–836

    Google Scholar 

  • Roch P, Cooper EL, Eskinazi DP (1983) Serological evidences for a membrane structure related to human β2-microglobulin expressed by certain earthworm leukocytes. Eur J Immunol 13: 1037–1042

    PubMed  CAS  Google Scholar 

  • Roch P, Davant N, Lassègues M (1984) Isolation of agglutinins from lysins in earthworm coelomic fluid by gel filtration followed by chromatofocusing. J Chromatogr 290: 231–235

    CAS  Google Scholar 

  • Roch P, Lassègues M, Valembois P (1991a) Antibacterial activity of Eisenia fetida andrei coelomic fluid. III. Relationship within the polymorphic hemolysins. Dev Comp Immunol. 15: 27–32

    PubMed  CAS  Google Scholar 

  • Roch P, Stabili L, Pagliara P (1991b) Purification of three serine proteases from the coelomic cells of earthworms (Eisenia fetida). Comp Biochem Physiol 98B: 597–602

    Google Scholar 

  • Schrevel J (1969) Recherches sur le cycle des Lucodinidae Gregarines parasites d’annelides polychetes. Protistologica 5: 561–588

    Google Scholar 

  • Schrevel J (1970) Contribution a l’etude des Selenidiidae parasites d’ annelides polychetes. I. Cycles biologiques. Protistologica 6: 389–426

    Google Scholar 

  • Schrevel J (1971) Contribution a F etude des Selenidiidae parasites d’ annelides polychetes. II. Ultrastructure de quelques trophozoites. Protistologica 7: 439–450

    Google Scholar 

  • Schubert I, Messner B (1971) Untersuchungen fiber das Vorkommen von Lysozym bei Anneliden. Zool Jahrb Physiol 76: 36–50

    CAS  Google Scholar 

  • Shalev A, Goldenberg PZ, Huebner E (1980) Evidence for an H-Y cross-reactive antigen in invertebrates. Differentiation 16: 77–80

    PubMed  CAS  Google Scholar 

  • Shalev A, Greenberg AH, Logdberg L, Bjorck L (1981) β2-Microglobulin-like molecules in low vertebrates and invertebrates. J Immunol 127: 1186–1191

    PubMed  CAS  Google Scholar 

  • Shalev A, Segal S, Eli MB (1985) Evolutionary conservation of brain Thy-1 glycoprotein in vertebrates and invertebrates. Dev Comp Immunol 9: 497–506

    PubMed  CAS  Google Scholar 

  • Sinkora M, Bilej M, Tučková L, Romanovsky A (1993) Hemolytic function of opsonizing protein of earthworm’s coelomic fluid. Cell Biol Int 17: 935–939

    PubMed  CAS  Google Scholar 

  • Soderhall K, Smith VJ (1986) The prophenoloxidase activating system: the biochemistry of its activation and role in arthropod cellular immunity, with special reference to crustaceans. In: Brehelin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York, pp 208–223

    Google Scholar 

  • Stein E, Cooper EL (1981) The role of opsonins in phagocytosis by coelomocytes of the earthworm Lumbricus terrestris. Dev Comp Immunol 5: 415–425

    PubMed  CAS  Google Scholar 

  • Stein EA, Cooper EL (1983) Carbohydrate and glycoprotein inhibitors of naturally occurring and induced agglutinins in the earthworm Lumbricus terrestris. Comp Biochem Physiol 76B: 197–206

    Google Scholar 

  • Stein EA, Cooper EL (1988) In vitro agglutinin production by earthworm leukocytes. Dev Comp Immunol 12: 531–548

    PubMed  CAS  Google Scholar 

  • Stein EA, Avtalion RR, Cooper EL (1977) The coelomocytes of the earthworm Lumbricus terrestris: morphology and phagocytic properties. J Morphol 153: 467–476

    PubMed  CAS  Google Scholar 

  • Stein EA, Wojdani A, Cooper EL (1982) Agglutinins in the earthworm Lumbricus terrestris: naturally occurring and induced. Dev Comp Immunol 6: 407–421

    PubMed  CAS  Google Scholar 

  • Stein EA, Younai S, Cooper EL (1986) Bacterial agglutinins of the earthworm, Lumbricus terrestris. Comp Biochem Physiol 84B: 409–415

    Google Scholar 

  • Stein EA, Younai S, Cooper EL (1990) Separation and partial purification of agglutinins from coelomic fluid of the earthworm, Lumbricus terrestris. Comp Biochem Physiol 97B: 701–705

    Google Scholar 

  • Sun SC, Lindstrom I, Boman HG, Faye I, Schmidt O (1990) Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily. Science 250: 1729–1732

    PubMed  CAS  Google Scholar 

  • Takahashi T, Iwase T, Kobayashi K, Rejnek J, Mestecky J, Moro I (1992) Phylogeny of the immunoglobulin joining (J) chain. 7th Int Congr Mucosal Immunology, Prague, Czechoslovakia, 16–20 Aug 1992, Czechoslovak Immunological Society, Prague, 234 pp

    Google Scholar 

  • Toupin J, Lamoureux G (1976) Coelomocytes of earthworms: phytohemagglutinin (PHA) responsiveness. In: Wright RK, Cooper EL (eds) Phylogeny of thymus and bone marrowbursa cells. Elsevier, Amsterdam, pp 19–27

    Google Scholar 

  • Tučková L, Bilej M (1994) Antigen processing in earthworms. Immunol Lett 41: 273–277

    PubMed  Google Scholar 

  • Tučková L, Rejnek J, Šíma P, Ondrejova R (1986a) Lytic activities in coelomic fluids of Eisenia foetida and Lumbricus terrestris. Dev Comp Immunol 10: 181–189

    PubMed  Google Scholar 

  • Tučková L, Rejnek J, Šíma P (1986b) Lytic activites in coelomic fluid of annelids E. foetida and L. terrestris. 6th Int Congr Immunol Toronto, National Research Council Canada, 1: 52. 4 (Abstr)

    Google Scholar 

  • Tučková L, Rejnek J, Šíma P (1988) Response to parenteral stimulation in earthworms L. terrestris and E. foetida. Dev Comp Immunol 12: 287–296

    PubMed  Google Scholar 

  • Tučková L, Rejnek J, Bilej M, Pospíšil R (1991a) Characterization of antigen-binding protein in earthworms Lumbricus terrestris and Eisenia foetida. Dev Comp Immunol 15: 263–268

    PubMed  Google Scholar 

  • Tučková L, Rejnek J, Bilej M, Hájková H, Romanovský A (1991b) Monoclonal antibodies to antigen binding protein of annelids (Lumbricus terrestris). Comp Biochem Physiol 100B: 19–23

    Google Scholar 

  • Vaillier J, Cadoret MA, Roch P, Valembois P (1985) Protein analysis of earthworm coelomic fluid. III. Isolation and characterization of several bacteriostatic molecules from Eisenia foetida andrei. Dev Comp Immunol 9: 11–20

    PubMed  CAS  Google Scholar 

  • Valembois P (1963) Recherches sur la nature de la reaction antigreffe chez le lombricien Eisenia foetida. C R Acad Sci D (Paris) 257: 3489–3490

    Google Scholar 

  • Valembois P, Roch P, Du Pasquier L (1973) Dégradation in vitro de protéine éntrangére par les macrophages du Lombricien Eisenia fetida Sav. C R Acad Sci Paris Sér III 277: 57–60

    CAS  Google Scholar 

  • Valembois P, Roch P, Boiledieu D (1980) Natural and induced cytotoxicities in sipunculids and annelids. In: Manning MJ (ed) Phylogeny of immunological memory. Elsevier, Amsterdam, pp 47–55

    Google Scholar 

  • Valembois P, Roch P, Lassègues M, Cassand P (1982) Antibacterial activity of the hemolytic system from the earthworm Eisenia fetida andrei. J Invertebr Pathol 40: 21–27

    Google Scholar 

  • Valembois P, Roch P, Lassègues M (1986) Antibacterial molecules in annelids. In: Brehelin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York, pp 74–93

    Google Scholar 

  • Valembois P, Seymour J, Roch P (1991) Evidence and cellular localization of an oxidative activity in the coelomic fluid of the earthworm Eisenia fetida andrei. J Invertebr Pathol 57: 177–183

    CAS  Google Scholar 

  • Valembois P, Lassègues M, Roch P (1992) Formation of brown bodies in the coelomic cavity of the earthworm Eisenia fetida andrei and attendant changes in shape and adhesive capacity of constitutive cells. Dev Comp Immunol 16: 95–101

    PubMed  CAS  Google Scholar 

  • Větvička V, Šima P, Cooper EL, Bilej M, Roch P (1994) Immunology of annelids. CRC Press, Boca Raton

    Google Scholar 

  • Villaro AC, Sesma P, Alegría D, Vázquez JJ, Lopez J (1985) Relationship of symbiotic microorganisms to metanephridium: phagocytic activity in the metanephridinal epithelium of two species of Oligochaeta. J Morphol 186: 307–314

    Google Scholar 

  • Vivier E, Henneré E (1964) Cytologic, cycle et aflinites de la Coccidie Coelotropha durchoni nomen novum (= Eucoccidium durchoni Vivier), parasite de Nereis diversicolor O. F. Müller ( Annelide Polychete ). Bull Biol Fr Belg 1: 154–206

    Google Scholar 

  • Voburka Z, Mareš M, Větvička V, Bilej M, Baudyš M, Fusek M (1992) New trypsin inhibitors are present in the coelomic fluid of the earthworm Lumbricus terrestris. Biochem Int 27: 679–685

    PubMed  CAS  Google Scholar 

  • Wojdani A, Stein EA, Lemmi CA, Cooper EL (1982) Agglutinins and proteins in the earthworm, Lumbricus terrestris, before and after injection of erythrocytes, carbohydrates, and other materials. Dev Comp Immunol 6: 613–624

    PubMed  CAS  Google Scholar 

  • Zikán J, ŠÍma P, Prokešova L, Hadge D (1980) Binding of nonmammalian immunoglobulins to staphylococcal protein A. Folia Biol (Prague) 26: 261–266

    Google Scholar 

  • Zwilling R, Neurath H (1981) Invertebrate proteases. In: Lorand L (ed) Methods in enzymology, vol 80. Academic Press, New York, pp 633–664

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Jaroslav Rejnek

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tučková, L., Bilej, M. (1996). Mechanisms of Antigen Processing in Invertebrates: Are There Receptors?. In: Cooper, E.L. (eds) Invertebrate Immune Responses. Advances in Comparative and Environmental Physiology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79693-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79693-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79695-1

  • Online ISBN: 978-3-642-79693-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics