Skip to main content

The Immunocytes of Protostomes and Deuterostomes as Revealed by LM, EM and Other Methods

  • Chapter
Invertebrate Immune Responses

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 23))

Abstract

The immunocytes of invertebrates have not been well studied, since only a limited number of species of arthropods, mollusks, echinoderms and urochordates have been investigated. Most species of invertebrates do not have blood vessels that isolate the circulating fluid and cells from other connective tissue components. Thus, wandering cells in the fluid circulating through vessels or filling spaces among tissue cells and the coelomic cavity are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adema CM, van Deutekom-Mulder EC, van der Knaap WPW, Meuleman EA, Sminia T (1991) Generation of oxygen radicals in hemocytes of the snail Lymnaea stagnalis in relation to the rate of phagocytosis. Dev Comp Immunol 15: 17–26

    PubMed  CAS  Google Scholar 

  • Akai H, Sato S (1973) Ultrastructure of the larval hemocytes of the silkworm, Bombyx mori L. ( Lepidoptera: Bombycidae). Int J Insect Morphol Embryol 2: 207–231

    Google Scholar 

  • Amen RI, Tijnagel JMG, van der Knaap WPW, Meuleman EA, de Lange-de Klerk ESM, Sminia T (1991) Effects of Trichobilharzia ocellata on hemocytes of Lymnaea stagnalis. Dev Comp Immunol 15: 105–115

    PubMed  CAS  Google Scholar 

  • Andrew W (1961) Phase microscope studies of living blood cells of the tunicates under normal and experimental conditions, with a description of a new type of motile cell appendage. Q J Microsc Sci 102: 89–105

    Google Scholar 

  • Armstrong PB, Rickles FR (1982) Endotoxin-induced degranulation of the Limulus amebocyte. Exp Cell Res 140: 15–24

    PubMed  CAS  Google Scholar 

  • Ashida M, Ochiai M, Niki T (1988) Immunolocalization of prophenoloxidase among hemocytes of the silkworm, Bombyx mori. Tissue Cell 20: 599–610

    PubMed  CAS  Google Scholar 

  • Azumi K, Satoh N, Yokosawa H (1993) Functional and structural characterization of hemocytes of the solitary ascidian Halocynthia roretzi. J Exp Zool 265: 309–316

    CAS  Google Scholar 

  • Bauchau AG (1981) Crustaceans. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol 2. Academic Press, London, pp 385–420

    Google Scholar 

  • Bauchau AG, de Brouwer MB (1972) Ultrastructure des hemocytes d’Eriocheir sinensis, Crustace Decapode Brachoure. J Microsc (Paris) 15: 171–180

    Google Scholar 

  • Beck G, Habicht GS (1986) Isolation and characterization of a primitive interleukin-l-like protein from an invertebrate, Asterias forbesi. Proc Natl Acad Sci USA 83: 7429–7433

    PubMed  CAS  Google Scholar 

  • Beck G, Habicht GS (1991) Purification and biochemical characterization of an invertebrate interleukin 1. Mol Immunol 28: 577–584

    PubMed  CAS  Google Scholar 

  • Bell TA, Lightner DV (1988) A handbook of normal penaeid shrimp histology. World Aquaculture Society. Allen Press, Lawrence, Kansas, 114 pp

    Google Scholar 

  • Bertheussen K (1979) The cytotoxic reaction in allogeneic mixtures of echinoid phagocytes. Exp Cell Res 120: 373–381

    PubMed  CAS  Google Scholar 

  • Bertheussen K, Seljelid R (1978) Echinoid phagocytes in vitro. Exp Cell Res 111: 401–412

    PubMed  CAS  Google Scholar 

  • Bilej M, Scherlinck J-P, VandenDriessche T, de Baetselier P, Vetvicka V (1990) The flow cytometric analysis of in vitro phagocytic activity of earthworm coelomocytes (Eisenia foetida; Annelida ). Cell Biol Int Rep 14: 831–837

    Google Scholar 

  • Blalock JE (1989) A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev 69: 1–32

    PubMed  CAS  Google Scholar 

  • Bodammer JE (1978) Cytological observations on the blood and hemopoietic tissue in the crab Callinectes sapidus. I. The fine structure of hemocytes from intermolt animals. Cell Tissue Res 187: 79–96

    PubMed  CAS  Google Scholar 

  • Boiledieu D, Valembois P (1977a) Natural cytotoxic activity of spipunculid leukocytes on allogenic and xenogin erythrocytes. Dev Comp Immunol 1: 207–216

    PubMed  CAS  Google Scholar 

  • Boiledieu D, Yalembois P (1977b) The mechanism of leukocyte cytotoxicity studied by time-lapse microcinematography and its inhibition: an example of in vitro specific recognition in invertebrates. In: Solomon JB, Horton JD (eds) Developmental immunology. Elsevier, Amsterdam, pp 51–57

    Google Scholar 

  • Bookhout CG, Greenburg NP (1940) Cell types and clotting reactions in the echinoid, Mellita quinquiesperforata. Biol Bull 79: 309–320

    Google Scholar 

  • Brown AC, Brown RJ (1965) The fate of thorium dioxide injected into the pedal sinul of Bullia ( Gastropoda: Prosobranchia). J Exp Biol 42: 509–519

    Google Scholar 

  • Cheng TC (1981) Bivalves. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol 1. Academic Press, London, pp 233–300

    Google Scholar 

  • Cheng TC, Garrabrant TA (1977) Acid phosphatase in granulocytic capsules formed in strains of Biomphalaria glabrata totally and partially resistant to Schistosoma mansoni. Int J Parasitol 7: 467–472

    PubMed  CAS  Google Scholar 

  • Chien PK, Johnson PT, Holland ND, Chapman FA (1970) The coelomic elements of sea urchins (Strongylocentrotus). IV. Ultrastructure of the coelomocytes. Protoplasma 71: 419–442

    Google Scholar 

  • Cohen N, Sigel MM (1982) The reticuloendothelial system. A comprehensive treatise, 3. Phylogeny and ontogeny. Plenum Press, New York

    Google Scholar 

  • Cooper EL (1968) Transplantation immunity in annelids. I. Rejection of xenografts exchanged between Lumbricus terrestris and Eisenia foetida. Transplantation 6: 322–337

    PubMed  CAS  Google Scholar 

  • Cooper EL (1969) Specific tissue graft rejection in earthworms. Science 166: 1414–1415

    PubMed  CAS  Google Scholar 

  • Cooper EL (1976) Cellular recognition of allografts and xonografts in invertebrates. In: Marchalonis JJ (ed) Comparative immunology. Blackwell, Oxford, pp 36–79

    Google Scholar 

  • Cooper EL (1992) Overview of immunoevolution. Boll Zool 59: 119–128

    Google Scholar 

  • Cooper EL, Raftos DA, Kelly KL (1992a) Immunobiology of tunicates: the search for precursors of the vertebrate immune system. Boll Zool 59: 175–181

    Google Scholar 

  • Cooper EL, Rinkevich B, Uhlenbruck G, Valempois P (1992b) Invertebrate immunity: another view point. Scand J Immunol. 35: 247–266

    PubMed  CAS  Google Scholar 

  • Cooper EL, Stein EA (1981) Oligochetes. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol 1. Academic Press, London, pp. 75–140

    Google Scholar 

  • Cooper EL, Leung MK, Suzuki MM, Vick K, Cated P, Stefano GB (1993) An enkephalin-like molecule in earthworm coelomic fluid modifies leukocyte behavior. Dev Comp Immunol 17: 201–209

    PubMed  CAS  Google Scholar 

  • Cowden RR, Curtis SK (1974) The octopus white body: an ultrastructural survey. In: Cooper EL (ed) Invertebrate immunology. Plenum Press, New York, pp 77–90

    Google Scholar 

  • Cowden RR, Curtis SK (1981) Cephalopods. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol 1. Academic Press, London, pp 301–323

    Google Scholar 

  • Cuenot L (1891) Etudes sur le sang et les glandes lymphatiques dans la serie animale (2°parties: Invertebres). Arch Zool Exp Gen Ser 2 9: 13–90

    Google Scholar 

  • Cuenot L (1905) L’organe phagocytaire des crustaces decapodes. Arch Zool Exp Gen Ser 43: 1–16

    Google Scholar 

  • Dales RP (1961) The coelomic and peritoneal cell systems of some sabellid polychaetes. Q J Microsc Sci 102: 327–346

    Google Scholar 

  • Dales RP, Dixon LRJ (1981) Polychetes. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol 2. Academic Press, London, pp 35–74

    Google Scholar 

  • David CN, Murphy S (1977) Characterization of interstitial stem cells in hydra by cloning. Dev Biol 58: 372–383

    PubMed  CAS  Google Scholar 

  • Deck JD, Hay ED, Revel JP (1966) Fine structure and origin of the tunic of Perophora viridis. J Morphol 120: 267–280

    PubMed  CAS  Google Scholar 

  • Decker JM, Elmholt A, Muchmore AV (1981) Spontaneous cytotoxicity mediated by invertebrate mononuclear cells toward normal and malignant vertebrate targets: inhibition by defined mono- and disaccharides. Cell Immunol 59: 161–170

    PubMed  CAS  Google Scholar 

  • De Leo G, Ptricolo E, Frittitta G (1981) Fine structure of the tunic of Ciona intestinalis L. II. Tunic morphology, cell distribution and the functional importance. Acta Zool (Stockh) 62: 259–271

    Google Scholar 

  • Deno T (1987) Autonomous fluorescence of eggs of the ascidian Ciona intestinalis. J Exp Zool 241: 71–79

    Google Scholar 

  • Dikkeboom R, van der Knaap WPW, Maaskant JJ, de Jonge AJR (1985) Different subpopulations of haemocytes in juvenile, adult and Trichobilharzia ocellata-mfQcted Lymnaea stagnalis: a characterization using monoclonal antibodies. Z Parasitenkd 71: 815–819

    PubMed  CAS  Google Scholar 

  • Dikkeboom R, Tijnage MGH, van der Knaap WPW (1988) Monoclonal antibody recognized hemocyte subpopulations in juvenile and adult Lymnaea stagnalis: functional characteristics and lectin binding. Dev Comp Immunol 12: 17–32

    PubMed  CAS  Google Scholar 

  • Du Pasquier L (1992) Origin and evolution of the vertebrate immune system. APMIS 100: 383–392

    PubMed  Google Scholar 

  • Eckelbarger KJ (1976) Origin and development of the amoebocytes of Nicolea zoostericola (Polychaeta Terebellidae) with a discussion of their possible role in oogenesis. Mar Biol 36: 169–182

    Google Scholar 

  • Edds KT (1977a) Microfilament bundles. I. Formation with uniform polarity. Exp Cell Res 108: 452–456

    PubMed  CAS  Google Scholar 

  • Edds KT (1977b) Dynamic aspects of filopodial formation by reorganization of microfilaments. J Cell Biol 73: 479–491

    PubMed  CAS  Google Scholar 

  • Edds KT (1980) The formation and elongation of filopodia during transformation of sea urchin coelomocytes. Cell Motility 1: 131–140

    PubMed  CAS  Google Scholar 

  • Endean R (1958) The coelomocytes of Holothuria leucosphilota. J Microsc Sci 99: 47–60

    Google Scholar 

  • Endean R (1961) The test of ascidian, Phallusia mammillata. Q J Microsc Sci 102: 107–117

    Google Scholar 

  • Ermak TH (1976) In: Wright RK, Cooper EL (eds) Phylogeny of thymus and bone marrowbursa cells. Elsevier, Amsterdam, pp 45–56

    Google Scholar 

  • Evans DL, Cooper EL (1990) Natural killer cells in ectothermic vertebrates: cytotoxic cells from different species have similar biological activities. Bioscience 40: 745–753

    Google Scholar 

  • Ey PL, Jenkin CR (1982) Molecular basis of self/nonself discrimination in the invertebrata. In: Cohen N, Sigel MM (eds) The reticuloendothelial system. A comprehensive treatise, 3. Phylogeny and ontogeny. Plenum Press, New York, pp 321–391

    Google Scholar 

  • Fontaine AR, Lambert P (1973) The fine structure of. the haemocyte of the holothurian Cucumaria miniata ( Brandt ). Can J Zool 51: 323–332

    Google Scholar 

  • Fontaine AR, Lambert P (1977) The fine structure of the leucocytes of the holothurian, Cucumaria miniata. Can J Zool 55: 1530–1544

    PubMed  CAS  Google Scholar 

  • Franceschi C, Cossarizza A, Monti D, Ottaviani E (1991) Cytotoxicity and immunocyte markers in cells from the freshwater snail Planorbarius corneus L. (Gastropoda: Pulmonata): implication for the evolution of natural killer cells. Eur J Immunol 21: 489–493

    PubMed  CAS  Google Scholar 

  • Fuke MT (1979) Studies on the coelomic cells of some japanese ascidians. Bull Mar Biol Stn Asamushi 16: 143–159

    Google Scholar 

  • Fuke M (1980) “Contact reactions” between xenogeneic or allogeneic coelomic cells of solitary ascidians. Biol Bull 158: 304–315

    Google Scholar 

  • Fuke M (1990) Self and nonself recognition in the solitary ascidian, Halocynthia roretzi. In: Marchalonis J, Reinish C (eds) Defence molecules. Alan R Liss, New York, pp 107–117

    Google Scholar 

  • Fuke M, Fukumoto T (1993) Correlative fine structural behavioral, and histochemical analysis of ascidian blood cells. Acta Zool (Stock) 74: 61–71

    Google Scholar 

  • Furuta E (1989) Primary culture of cells from the land slug. In: Mitsuhashi J (ed) Invertebrate cell system application, vol II. CRC Press, New York, pp 235–241

    Google Scholar 

  • Furuta E, Shimozawa A (1983) Primary culture of cells from the foot and mantle of the slug, Indiana fruhstorferi Collinge. Zool Mag 92: 290–296

    Google Scholar 

  • Furuta E, Shimozawa A (1994) The blood cell-producing site in lang slug, Indiana fruhstorferi. Acta Anat Nippon 69: 751–764

    PubMed  CAS  Google Scholar 

  • Furuta E, Yamaguchi K, Aikawa M, Shimozawa A (1987) Phagocytosis by hemolymph cells of the land slug, Indiana fruhstorferi Collinge ( Gastropoda: Pulmonata). Anat Anz Jena 163: 89–99

    CAS  Google Scholar 

  • George WC (1930) The histology of the blood of some Bermuda ascidians. J Morph Physiol 49: 385–413

    Google Scholar 

  • George WC (1939) A comparative study of the blood of the tunicates. Q J Microsc Sci 81: 391–431

    Google Scholar 

  • Hetzel HR (1963) Studies on Holothurian coelomocytes. I. A survey of coelomocyte types. Biol Bull 125: 289–301

    Google Scholar 

  • Hetzel HR (1965) Studies on holothurian coelomocytes. II. The origin of coelomocytes and formation of brown bodies. Biol Bull 128: 102–111

    Google Scholar 

  • Hildemann WH, Bigger CH, Johnston IS, Jokiel PL (1980) Characteristics of transplantation immunity in the sponge, Callyspongia diffusa. Transplantation 30: 362–367

    PubMed  CAS  Google Scholar 

  • Hirose E, Saito Y, Watanabe H (1988) A new type of the manifestation of colony specificity in the compound ascidian, Botrylloides violaceus Oka. Biol Bull 175: 240–245

    Google Scholar 

  • Hirose E, Saito Y, Watanabe H (1991) Tunic cell morphology and classification in botryllid ascidians. Zool Sci 8: 951–958

    Google Scholar 

  • Hose JE, Martin GG, Nguyen VA, Jucas J, Rosenstein T (1987) Cytochemical features of shrimp hemocytes. Biol Bull 173: 178–187

    Google Scholar 

  • Hose JE, Martin GG, Gerard AS (1990) A decapod hemocyte classification scheme integrating morphology, cytochemistry, and function. Biol Bull 178: 33–45

    Google Scholar 

  • Hughes TK Jr, Smith EM, Leung MK, Stefano GB (1992) Evidence for the conservation of an immunoreactive monokine network in invertebrates. Ann NY Acad Sci 650: 74–80

    PubMed  CAS  Google Scholar 

  • Ito T, Matsutani T, Mori K, Nomura T (1992) Phagocytosis and hydrogen peroxide production by phagocytes of the sea urchin Strongylocentrotus nudus. Dev Comp Immunol 16: 287–294

    PubMed  CAS  Google Scholar 

  • Janeway CA (1989) Natural killer cells. A primitive immune system. Nature 341: 108

    PubMed  CAS  Google Scholar 

  • Jackson AD, Smith VJ, Peddie CM (1993) In vitro phenoloxidase activity in the blood of Ciona intestinalis and other ascidians. Dev Comp Immunol 177: 97–108

    Google Scholar 

  • Johnson PT (1969a) The coelomic elements of sea urchins (Strongylocentrotus). J Invertebr Pathol 13: 25–41

    PubMed  CAS  Google Scholar 

  • Johnson PT (1969b) The coelomic elements of sea urchins (Strongylocentrotus). II. Cytochemistry of the coelomocytes. Histochemie 17: 213–231

    PubMed  CAS  Google Scholar 

  • Johnson PT (1969c) The coelomic elements of sea urchins (Stronglylocentrotus). III. In vitroreaction to bacteria. J Invertebr Pathol 13: 42–62

    Google Scholar 

  • Johnson PT, Beeson RJ (1966) In vitro studies on Patria miniata ( Brandt) coelomocytes, with remarks on revolving cysts. Life Sci 5: 1641–1666

    PubMed  CAS  Google Scholar 

  • Johnson PT (1987) A review of fixed phagocytic and pinocytotic cells of decapod crustaceans, with remarks of hemocytes. Dev Comp Immunol 11: 679–704

    PubMed  CAS  Google Scholar 

  • Jones JC (1962) Current concepts concerning insect hemocytes. Am Zool 2: 209–246

    Google Scholar 

  • Kalk M (1963) Intracellular sites of activity in the histogenesis of tunicate vanadocytes. Q J Microsc Sci 104: 483–493

    Google Scholar 

  • Kelly KL, Cooper EL, Raftos DA (1992) In vitro allogeneic cytotoxicity in the solitary urochordates. J Exp Zool 262: 202–208

    PubMed  CAS  Google Scholar 

  • Kelly KL, Cooper EL, Raftos DA (1993) A humoral opsonin from the solitary urochordate Styela clava. Dev Comp Immunol 17: 29–39

    PubMed  CAS  Google Scholar 

  • Klein J (1989) Are invertebrates capable of anticipatory immune responses? Scand J Immunol 29: 499–505

    PubMed  CAS  Google Scholar 

  • Kondo M, Itami T, Takahashe Y, Fujii R, Tomonaga S (1994) Structure and function of the lymphoid organ in the kuruma prawn. Dev Comp Immunol 18 (Suppl): S 109

    Google Scholar 

  • Lai-Fook J (1973) The structure of the haemocytes of Calpodes ethlius (Lepidoptera). J Morphol 139: 79–104

    Google Scholar 

  • Landureau JC (1968) Cultures in vitro de cellules embryonnaires de blattes (insectes dictyopteres). II. Obtention de lignees cellulaires a multiplication continue. Exp Cell Res 50: 323–337

    Google Scholar 

  • Landureau JC, Grellet P (1975) Obtention de lingnees permanentes d’hemocytes de blatte: caracteristiques physiologiques et ultrastructurales. J Insect Physiol 21: 137–151

    Google Scholar 

  • Leclerc M, Brillouet C, Luquet G, Binaghi RA (1986) Production of an antibody-like factor in the sea star Asterias rubens: involvement of at least three cellular populations. Immunology 57: 479–482

    PubMed  CAS  Google Scholar 

  • Lehn HZ (1951) Teilungsfolgen und Determination von I-zellen fuer die Cnidenbildung bei Hydra. Z Naturforsch B 6: 388–391

    Google Scholar 

  • Martin GG, Hose JE, Kim J J (1987) Structure of hematopoietic nodules in the ridgeback prawn, Sicyonia ingentis: light and electron microscopic observations. J Morphol 192:193–204

    Google Scholar 

  • Michibata H, Hirata J, Terada T, Sakurai H (1988) Autonomous fluorescence of ascidian blood cells with special reference to identification of vanadocytes. Experientia 44: 906–907

    Google Scholar 

  • Michifiata H, Uyama T, Hirata J (1990) Vanadium-containing blood cells (Vanadocytes) show no fluorescence due to the tunichrome in the ascidian Ascidia sydneiensis samea. Zool Sci 7: 55–61

    Google Scholar 

  • Milanesi C, Burighel P (1978) Blood cell ultrastructure of the ascidian Botryllus schlosseri. I. Hemoblast, granulocytes, macrophage, morula cell and nephrocyte. Acta Zool (Stockh) 59: 135–147

    Google Scholar 

  • Morgan TH (1938) The genetic and the physiological problems of self-sterility in Ciona. 1. Data on self- and cross-fertilization. J Exp Zool 78: 271–318

    Google Scholar 

  • Mürer EH, Levin J, Holme R (1975) Isolation and studies of the granules of the amoebocytes of Limulus polyphemus, the horseshoe crab. J Cell Physiol 86: 533–542

    PubMed  Google Scholar 

  • Muta T, Hashimoto R, Miyata T, Nishimura H, Toh Y, Iwanaga S (1990) Proclotting enzyme from horseshoe crab hemocytes. cDNA cloning, disulfide locations and subcellular localization. J Biol Chem 265: 22426–22433

    PubMed  CAS  Google Scholar 

  • Nakamura T, Morita T, Iwanaga S (1985) Intracellular proclotting enzyme in Limulus (Tachypleus tridentatus) hemocytes: its purification and properties. J Biochem 97: 1561–1574

    PubMed  CAS  Google Scholar 

  • Ohtake S, Shishikura F, Tanaka K (1989) Roles of granular amoebocytes on adhesion/aggregation of hemolymph of Halocynthia roretzi. Zool Sci (Abstr) 6: 1106

    Google Scholar 

  • Ohuye T (1936) On the coelomic corpuscles in the body fluid of some invertebrates. III. The histology of the blood of some Japanese ascidians. Sci Rep Tohoku Univ 11: 191–206

    Google Scholar 

  • Oka M (1969) Studies on Penaeus orientalis Kishinoueye-VIII Structure of the newly found lymphoid organ. Bull Jpn Soc Sci Fish 35: 245–250

    Google Scholar 

  • Otto JJ, Kane RE, Bryan J (1979) Formation of filopodia in coelomocytes: localization of fascin, a 58,000 dalton actin cross-linking protein. Cell 17: 285–293

    PubMed  CAS  Google Scholar 

  • Overton J (1966) The fine structure of blood cells in the ascidian Perophora viridis. J Morphol 119: 305–326

    PubMed  CAS  Google Scholar 

  • Parinello N, Patricolo E, Canicatti C (1977) Tunicate immunobiology. I. Tunic reaction of Ciona intestinalis L. to erythrocyte injection. Boll Zool 44: 373–381

    Google Scholar 

  • Parrinello N, Patricolo E, Canicatti C (1984) Inflammatory-like reaction in the tunic of Ciona intestinalis (Tunicata). I. Encapsulation and tissue injury. Biol Bull 167: 229–237

    Google Scholar 

  • Parinello N, Arizza V, Cammarata M, Parinello DM (1993) Cytotoxic activity of Ciona intestinalis (Tunicata) hemocytes: properties of the in vitro reaction against erythrocyte targets. Dev Comp Immunol 17: 19–27

    Google Scholar 

  • Porchet-Hennere E, Dugimont T, Fischer A (1992) Natural killer cells in a lower invertebrates Nereis diver sicolor. Eur J Cell Biol 58: 99–107

    PubMed  CAS  Google Scholar 

  • Price CD, Ratcliffe NA (1974) A reappraisal of insect haemocyte classification by the examination of blood from fifteen insect orders. Z Zellforsch Mikrosk Anat 147: 537–549

    PubMed  CAS  Google Scholar 

  • Raftos DA, Cooper EL (1991) Proliferation of lymphocyte-like cells from the solitary tunicate, Styela clava, in response to allogeneic stimuli. J Exp Zool 260: 391–400

    PubMed  CAS  Google Scholar 

  • Raftos DA, Tait NN, Briscoe DA (1987) Cellular basis of allograft rejection in the solitary urochordata, Styela plicata. Dev Comp Immunol 11: 713–725

    PubMed  CAS  Google Scholar 

  • Raftos DA, Stillman DL, Cooper EL (1990) In vitro culture of tissue from the tunicate Styela clava. In Vitro Cell Dev Biol 26: 962–970

    Google Scholar 

  • Raftos DA, Cooper EL, Habicht GS, Beck G (1991) Invertebrate cytokines — tunicate cell proliferation stimulated by an interleukin-l-like molecule. Proc Natl Acad Sci USA 88: 9518–9522

    PubMed  CAS  Google Scholar 

  • Ratcliffe NA, Rowley AF (1979) A comparative synopsis of the structure and function of the blood cells of insects and other invertebrates. Dev Comp Immunol 3: 189–221

    PubMed  CAS  Google Scholar 

  • Ratcliffe NA, Rowley AF (1981a) Invertebrate blood cells 1. Academic Press, London

    Google Scholar 

  • Ratcliffe NA, Rowley AF (1981b) Invertebrate blood cells 2. Academic Press, London

    Google Scholar 

  • Ratcliffe NA, Rowley AF, Fitzgerald RW, Rhodes CP (1985) Invertebrate immunity: basic concepts and recent advances. Int Rev Cytol 97: 183–354

    CAS  Google Scholar 

  • Rizki TM (1962) Experimental analysis of hemocyte morphology in insects. Am Zool 2: 247–256

    Google Scholar 

  • Roch P, Valembois P (1978) Evidence for concanavalin A-receptors and their redistribution on lumbricid leukocytes. Dev Comp Immunol 2: 51–63

    PubMed  CAS  Google Scholar 

  • Rowley AF (1977) The role of the haemocytes of Clitumnus extradentatus, in haemolymph coagulation. Cell Tissues. Res 182: 513–524

    CAS  Google Scholar 

  • Rowley AF, Ratcliffe NA (1976) The granular cells of Galleria mellonella during clotting and phagocytic reactions in vitro. Tissue Cell 8: 437–446

    PubMed  CAS  Google Scholar 

  • Rowley AF, Ratcliffe NA (1981) Insect. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol 2. Academic Press, London, pp 421–488

    Google Scholar 

  • Sato S, Akai H, Sawada H (1976) An ultrastructural study of capsule formation by Bombyx hemocytes. Annot Zool Jpn 49: 177–188

    Google Scholar 

  • Sawada T, Fujikura Y, Tomonaga S, Fukumoto T (1991) Classification and characterization of ten hemocyte types in the tunicate Halocynthia roretzi. Zool Sci 8: 939–950

    Google Scholar 

  • Sawada T, Zhang J, Cooper EL (1993) Classification and characterization of hemocytes in Styela clava. Biol Bull 184: 87–96

    Google Scholar 

  • Swada T, Zhang J, Cooper EL (1994) Sustained viability and proliferation of hemocytes from the cultured pharynx of Styela clava. Mar Biol 119: 597–603

    Google Scholar 

  • Schmit AR, Ratcliffe NA (1978) The encapsulation of araldite implants and recognition of foreignness in Clitumnus extradentatus. J Insect Physiol 24: 511–521

    Google Scholar 

  • Sminia T (1981) Gastropods. In: Ratcliffe NA, Rowley AF, (eds) Invertebrate blood cells, vol 2. Academic Press, London, pp 191–232

    Google Scholar 

  • Sminia T, Borghart-Reinders E, van de Linde AW (1974) Encapsulation of foreign materials experimentally introduced into the fresh water snail Lymnaea stagnalis. Cell Tissue Res 153: 307–326

    PubMed  CAS  Google Scholar 

  • Smith VJ (1981) The echinoderms. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol 2. Academic Press, London, pp 513–562

    Google Scholar 

  • Sohi SS (1979) Hemocyte cultures and insect hemocytology. In: Gupta AP (ed) Insect hemocytes. Cambridge Univ Press, Cambridge, pp 259–318

    Google Scholar 

  • Stefano GB, Leung MK, Zhao X, Scharrer B (1989) Evidence for the involvement of opioid neuropeptides in the adherence and migration of immunocompetent invertebrate hemocytes. Proc Natl Acad Sci USA 86: 626–630

    PubMed  CAS  Google Scholar 

  • Stefano GB, Shipp MA, Scharrer B (1991) A possible immunoregulatory function for [Met]-enkephalin-Arg6-Phe7 involving human and invertebrate granulocytes. J Neuroimmunol 31: 97–103

    PubMed  CAS  Google Scholar 

  • Stein EA, Cooper EL (1978) Cytochemical observations of coelomocytes from the earth-worm Lumbricus terrestris. Histochem J 10: 657–678

    PubMed  CAS  Google Scholar 

  • Stein EA, Avtalion RR, Cooper EL (1977) The coelomocytes of the earthworm Lumbricus terrestris: morphology and phagocytic properties. J Morphol 153: 467–477

    PubMed  CAS  Google Scholar 

  • Taneda Y, Saito Y, Watanabe H (1985) Self and non-self discrimination in ascidians. Zool Sci 2: 433–442

    Google Scholar 

  • Terwilliger NB, Terwilliger RC, Schabtach E (1985) In: Cohen WD (ed) Blood cells of marine invertebrates. Alan R Liss, New York, pp 193–225

    Google Scholar 

  • Teschemacher H, Koch G, Scheffler H, Hildebrand A, Brantl V (1990) Opioid peptides: immunological significance? Ann NY Acad Sci 594: 66–77

    PubMed  CAS  Google Scholar 

  • Toh Y, Mizutani A, Tokunaga F, Muta T, Iwanaga S (1991) Morphology of the granular hemocytes of the Japanese horseshoe crab Tachypleus tridentatus and immunocytochemical localization of clotting factors and antimicrobial substances. Cell Tissue Res 266: 137–147

    Google Scholar 

  • Tyson CJ, Jenkin CR (1974) The cytotoxic effect of haemocytes from the crayfish Parachaeraps bicarinatus on tumor cells of vertebrates. Aust J Exp Biol Xed Sci 52: 915–923

    Google Scholar 

  • Valembois P, Boiledieu D (1980) Fine structure and functions of haemerythrocytes and leukocytes of Sipunculus nudus. J Morph 163: 69–77

    Google Scholar 

  • Valembois P, Lassegues M, Roch P (1992) Formation of brown bodies in the coelomic cavity of the earthworm Eisenia andrei and attendant changes in shape and adhesive capacity of constitutive cells. Dev Comp Immunol 16: 95–101

    PubMed  CAS  Google Scholar 

  • Vallee J A (1967) Studies of the blood of Ascidia nigra (Savigny). I. Total blood cell counts, differential blood cell counts, and hematocrit values. Bull South Calif Acad Sci 66: 23–28

    Google Scholar 

  • Van de Vyver G (1981) Organisms without special circulatory systems. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol 1. Academic Press, London, pp 19–32

    Google Scholar 

  • Van Praet M, Doumenc D (1974) Morphologie et morphogenese experimentale du tentacule chez Actina equina L. J Microsc Biol Cell 23: 29–38

    Google Scholar 

  • Vethamany VG, Fung M (1971) The fine structure of coelomocytes of the sea urchin Strongylocentrotus drobachiensis (Muller O. F. ). Can J Zool 50: 77–81

    Google Scholar 

  • Wago H (1982) Involvement of microfilaments in filopodial function of phagocytic granular cells of the silkworm, Bombyx mori. Dev Comp Immunol 6: 655–664

    PubMed  CAS  Google Scholar 

  • Watson GM, Mariscal RN (1983a) The development of a sea anemone tentacle specialized for aggression: morphogenesis and regression of the catch tentacle of Haliplanella luciae ( Cnidaria, Anthozoa). Biol Bull 164: 506–517

    Google Scholar 

  • Watson GM, Mariscal RN (1983b) Comparative ultrastructure of catch tentacles and feeding tentacles in the sea anemone Haliplanella. Tissue Cell 15: 939–953

    PubMed  CAS  Google Scholar 

  • Wittke M, Renwrants L (1984) Quantification of cytotoxic hemocytes of Mytilus edulis using a cytotoxicity assay in agar. J Invertebr Pathol 43: 248–253

    PubMed  CAS  Google Scholar 

  • Wood PJ, Visentin LP (1967) Histological and histochemical observations on hemolymph cells in the crayfish, Orconectes virilis. J Morphol 123: 559–568

    PubMed  CAS  Google Scholar 

  • Wright RK (1981) Urochordates. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol 2. Academic Press, London, pp 565–626

    Google Scholar 

  • Wright RK, Cooper EL (1975) Immunological maturation in the tunicate Ciona intestinalis. Am Zool 15: 21–27

    Google Scholar 

  • Yoshida R, Takikawa O, Oku T, Habara-Ohkubo A (1991) Mononuclear phagocytes: a major population of effector cells responsible for rejection of allografted tumor cells in mice. Proc Natl Acad Sci USA 88: 1526–1530

    PubMed  CAS  Google Scholar 

  • Yoshino TP (1976) The ultrastructure of the circulating hemolymph cells of the marine snail Cerithidea californica (Gastropoda; Prosobranchiata) J Morphol 150: 485–494

    Google Scholar 

  • Yoshino TP, Granath Jr WO (1983) Identification of antigenically distinct hemocyte subpopulations in Biomphalaria glabrata ( Gastropoda) using monoclonal antibodies to surface membrane markers. Cell Tissue Res 232: 553–564

    PubMed  CAS  Google Scholar 

  • Yoshino TP, Granath Jr WO (1985) Surface antigens of Biomphalaria glabrata (Gastropoda) hemocytes: functional heterogeneity in cell subpopulations recognized by a monoclonal antibody. J Invertebr Pathol 45: 174–186

    PubMed  CAS  Google Scholar 

  • Zaniolo G, Trentin P (1987) Regeneration of the tunic in the colonial ascidian, Botryllus schlosseri. Acta Embryol Morphol Exp 8: 173–180

    Google Scholar 

  • Zhang H, Sawada T, Cooper EL, Tomonaga S (1992) Electron microscopic analysis of tunicate (Halocynthia roretzi) hemocytes. Zool Sci 9: 551–562

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sawada, T., Tomonaga, S. (1996). The Immunocytes of Protostomes and Deuterostomes as Revealed by LM, EM and Other Methods. In: Cooper, E.L. (eds) Invertebrate Immune Responses. Advances in Comparative and Environmental Physiology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79693-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79693-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79695-1

  • Online ISBN: 978-3-642-79693-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics