Advertisement

Review of Methods for Calculating Fracture Parameters for Interface Crack Problems

  • I. S. Raju
  • B. Dattaguru

Abstract

The problem of an interface crack between two isotropic, orthotropic, or anisotropic materials has attracted attention from researchers because of applications in bonding problems involving these materials. This paper reviews some of the aspects of calculation of fracture parameters for these crack configurations.

Keywords

Interface Crack Trans ASME Strain Energy Release Rate Resin Layer Virtual Crack Closure Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. L. Williams, The Stresses Around a Fault or Crack in Dissimilar Media, Bull. Seismol. Soc. Am., Vol. 49, (1959), pp.199–204.Google Scholar
  2. [2]
    F. Erdogan, Stress Distribution in Bonded Dissimilar Materials with Cracks, J. Appl. Mech., Trans. ASME, Vol. 32, (1965), pp.403–410.MathSciNetCrossRefGoogle Scholar
  3. [3]
    J. Rice and G. C. Sih, Plane Problems of Cracks in Dissimilar Media, J. Appl. Mech., Trans. ASME, Vol. 32, (1965), pp.418–423.CrossRefGoogle Scholar
  4. [4]
    J. Rice, Elastic Fracture Mechanics Concepts for Interface Cracks, J. Appl. Mech., Trans ASME, Vol. 55, (1988), pp.98–103.CrossRefGoogle Scholar
  5. [5]
    T. K. O’Brien, Mixed-mode Strain Energy Release Rate Effects on Edge Delamination, in Effects of Defects in Composite Materials, ASTM STP 836, (1984), pp.125–142.Google Scholar
  6. [6]
    I. S. Raju, J. H. Crews, M.A. Aminpour, Convergence of Strain Energy Release Rate Components for Edge-Delaminated Composite Laminates, Eng.. Fract. Mech., Vol. 30, (1988), pp.383–396.CrossRefGoogle Scholar
  7. [7]
    B. Dattaguru, K.S. Venkatesha, T.S. Rammamurthy and F.G. Buchholz, Finite Element Estimates of Strain Energy Release Rate Components at the Tip of an Interface Crack Under Mode I Loading, Eng.. Fract. Mech., Vol. 49, (1994), pp.451–463.CrossRefGoogle Scholar
  8. [8]
    C. T. Sun, and C. J. Jih, On Strain Energy Release Rates for Interfacial Cracks in Bimaterial Media, Eng.. Fract. Mech., Vol. 28, (1987) pp.13–20.CrossRefGoogle Scholar
  9. [9]
    J. W. Hutchinson, M. E. Mear and J. R. Rice, Crack Paralleling an Interface between Dissimilar Materials, J. Appl. Mech., Trans ASME, Vol. 54, (1987), pp.828–832.CrossRefGoogle Scholar
  10. [10]
    Maria Comninou, The Interface Crack, J. Appl. Mech., Trans. ASME, Vol. 44, (1977), pp.631–636.MATHCrossRefGoogle Scholar
  11. [11]
    B. D. Davidson, H. Hu, and A. Schapery, An Analytical Crack Tip Element for Layered Elastic Strucutres, J. of. Appl. Mechanics (to Appear), 1995.Google Scholar
  12. [12]
    J. Bueth, Separation of Crack Extension Modes in Orthotropic Delamination Model, NASA TM 109180, March 1995.Google Scholar
  13. [13]
    C. F. Shih and R. J. Asaro, Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I-Small Scale Yielding, J. of Appl. Mech., Trans ASME, Vol. 55, (1988), pp.299–316.CrossRefGoogle Scholar
  14. [14]
    R. A. Naik and J. H. Crews, Determination of Stress Intensity Factors for Interface Cracks under Mixed-mode Loading, Paper presented at the ASTM National Symposium on Fracture Mechanics, June 30-July 2, 1992, Gatlinburg, TN. (Also available as NASA TM 107624, May 1992).Google Scholar
  15. [15]
    J. L. Bassani and J. Qu, Finite Crack on Bimaterial and Bicrystal Interfaces, J. Mech. Phys. Solids, Vol. 37, (1989), pp.435–453.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    K.-C. Wu, Stress Intensity Factor and Energy Release Rate for Interfacial Cracks Between Dissimilar Anisotropic Materials, J. of Appl. Mech., Trans ASME, Vol. 57, (1990), pp.882–886.CrossRefGoogle Scholar
  17. [17]
    Z. Suo, Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media, Proc. of Royal Soc. of London, Series A, Vol. 427, (1990), pp.331–358.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    J. Qu and J. L. Bassani, Interfacial Fracture Mechanics for Anisotropic Bimaterials, J. of Appl. Mech. Trans ASME, Vol. 60, (1993), pp.422–431.MATHCrossRefGoogle Scholar
  19. [19]
    H. G. Boem and S. N. Atluri, Near-tip fields and Stress Intensity Factors for Interfacial Cracks in Dissimilar Anisotropic Media, Center for Computational Mechanics, Georgia Institute of Technology, Atlanta, (March 1994).Google Scholar
  20. [20]
    W. T. Chow, H. G. Boem and S. N. Atluri, Calculation of Stress Intensity Factors for an Interfacial Crack Between Dissimilar Anisotropic Media Using a Hybrid Element Method and the Mutual Integral, Computational Mechanics (To appear), (1995).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • I. S. Raju
    • 1
  • B. Dattaguru
    • 2
  1. 1.NASA Langley Research CenterHamptonUSA
  2. 2.Indian Institute of ScienceBangaloreIndia

Personalised recommendations