Geobiological Trends and Events in the Precambrian Biosphere

  • Mikhail A. Fedonkin

Abstract

Reconstruction of the global biological events in the Precambrian requires a multidisciplinary approach. Data from the poor fossil record of the prokaryotes has to be supplemented by the interpretation of some sedimentological, geochemical and paleoclimatic phenomena as the biologically controlled processes. Biochemical and ecological conservatism of the prokaryotic ecosystems makes it possible to decode their signals documented in the Precambrian geological history. Expansion of the eukaryotes was the cause of the strong transformation of the fossil record as a whole. In addition to the biological innovation represented by the growth and change in the taxonomic diversity and cell (or body) size of the organisms, there were other global bio-events connected with the restructuring of the ecosystems, colonization of new environments, and rise of new physiologies which strongly affected the sedimentological and taphonomic processes.

Keywords

Ozone Uranium Shale Photosynthesis Magnetite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awramik, S.M., 1971. Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science 174, 825–827.Google Scholar
  2. Bengtson, S., 1992. Proterozoic and Early Cambrian skeletal metazoans. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Study. pp. 397–411. Cambridge University Press, Cambridge.Google Scholar
  3. Burzin, M.B., 1987. Strategy of defence from predation, trophic structure and body size distribution in the pelagic zone, and the stages of morphological evolution of acritarchs in the Late Precambrian and Early Cambrian. In: Sokolov, B.S. (ed.). 3rd All-Union Symp. Paleontol. Precambrian and Early Cambrian, Petrozavodsk, Abstr., 12–14 [In Russian].Google Scholar
  4. Castenholz, R.W., Bauld, J. and Pierson, B.K., 1992. Photosynthetic activity in modern microbial mat-building communities. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Approach. pp. 279–285. Cambridge University Press, New York.Google Scholar
  5. Christen, R., Ratto, A., Baroin, A., Perasso, R., Grell, K.G. and Adoutte, A., 1991. Origin of metazoans. A Phylogeny deduced from sequence of the 28S ribosomal RNA. In: Simonetta, A.M. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. pp. 1–9; Cambridge University Press, Cambridge.Google Scholar
  6. Chumakov, N.M., 1978. Precambrian Tillites and Tilloids. pp. 1–201; Nauka, Moscow [in Russian].Google Scholar
  7. Chumakov, N.M. and Elston, D.P., 1989. The paradox of Late Proterozoic glaciations at low latitudes. Episodes 12(2), 115–120.Google Scholar
  8. Conway Morris, S., 1993. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Paleontology 36(3), 593–635.Google Scholar
  9. Derry, L.A., Keto, L.S., Jacobsen, S.B., Knoll, A.H. and Sweet, K., 1989. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geochimica et Cosmochimica Acta 53, 2331–2339.Google Scholar
  10. Derry, L.A., Kaufman, A.J. and Jacobsen, S.B., 1992. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta 56, 1317–1329.Google Scholar
  11. Droser, M.L. and Bottjer, D.J., 1988. Trends in extent and depth of Early Paleozoic bioturbation in the Great Basin (California, Nevada and Utah). In: This Extended Land, Geological Journey in the Cordilleran Section, Las Vegas, Nevada. pp. 123–135.Google Scholar
  12. Durham, J.W., 1970. The fossil record and the origin of the Deuterostomia. Proc. North Amer. Paleontological Conv., 1969 H., 1104–1132.Google Scholar
  13. Fedonkin, M.A., 1983. Organic world of the Vendian. Itogi nauki i techniki, stratigrafia, paleontologia 12, 1–128 [in Russian].Google Scholar
  14. Fedonkin, M.A., 1985. Precambrian metazoans: the problems of preservation, systematics and evolution. Philosophical Trans. Roy. Soc. London Part B 311, 27–45.Google Scholar
  15. Fedonkin, M.A., 1987. Non-skeletal fauna of the Vendian and its place in the evolution of metazoans. Trans. Paleontol. Inst. N226, 1–175; Nauka, Moscow [In Russian].Google Scholar
  16. Fedonkin, M.A., 1990a. Precambrian metazoans. In: Briggs, D.E.G. and Crowther, P.R. (eds.), Paleobiology. A Synthesis. pp. 17–24; Blackwell Scientific Publ. Ltd.Google Scholar
  17. Fedonkin, M.A., 1990b. Systematic description of the Vendian Metazoa. In: Sokolov, B.S. and Iwanowski, A.B. (eds.), The Vendian System. Vol. 1. Paleontology, 71–120; Springer, Berlin Heidelberg New York.Google Scholar
  18. Fedonkin, M.A., 1990c. Paleoichnology of Vendian Metazoa. In: Sokolov, B.S. and Iwanowski, A.B. (eds.), The Vendian System. Vol. 1. Paleontology, 132–137; Springer, Berlin Heidelberg New York.Google Scholar
  19. Fedonkin, M.A., 1992a. Neoproterozoic ecosystem restructuring: from net to pyramid. Vth Internat. Conf. Global Bio-Events, Göttingen, February 16–19, 1992, Abstr., 33–34; Göttingen.Google Scholar
  20. Fedonkin, M.A., 1992b. Vendian faunas in the early evolution of Metazoa. In: Lipps, J.H. and Signor, P.W. (eds.), Origin and Early Evolution of the Metazoa. pp. 87–129; Plenum Press, New York.Google Scholar
  21. Fedonkin, M.A., 1993. Paleobiology of the Precambrian: on the way to the synthesis. In: Sokolov, B.S. and Iwanowski, A.B. (eds.), Faunas and Ecosystems of Geological Past. pp. 7–21; Moscow, Nauka.Google Scholar
  22. Fedonkin, M.A., 1995, in press. Vendian body fossils and trace fossils. In: Bengtson, S. (ed.), Early Life on Earth. Nobel Symp. N 84, Björkborn, Karlskoa, 297–316.Google Scholar
  23. Fedonkin, M.A., Chumakov, N.M. and Jankauskas, T.V., 1987. The problem of the global biotic and abiotic events in the Late Precambrian. 3rd All-Union Symp. Paleontol. Precambrian and Early Cambrian, Petrozavodsk, Abstr., 99–101 [in Russian].Google Scholar
  24. Field, K.G., Olson, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.G., Raff, E.C., Pace, N.R. and Raff, R.A., 1988. Molecular phylogeny of the animal kingdom. Science 239, 748–753.Google Scholar
  25. Gebelein, C.D., 1976. The effect of the physical, chemical and biological evolution of the Earth. In: Walter, M.R. (ed.), Stromatolites: Developments in Sedimentology 20, 499–516; Elsevier, Amsterdam.Google Scholar
  26. Gehling, J.G. 1991. The case for Ediacara fossils roots to the metazoan tree. Memoirs of the Geological Society of India 20, 181–224.Google Scholar
  27. Germs, J.G.B., 1972. New shelly fossils from the Nama Group, South West Africa. American Journal of Science 272, 752–761.Google Scholar
  28. Glaessner, M.F., 1984. The Dawn of Animal Life. A Biohistorical study. pp. 1–244; Cambridge University Press, Cambridge.Google Scholar
  29. Gnilovskaya, M.B., 1990. Vendian actinomycetes and organisms of uncertain systematic position. In: Sokolov, B.S. and Iwanowski, A.B. (eds.), The Vendian System. Vol. 1. Paleontology. pp. 148–153; Springer, Berlin Heidelberg New York.Google Scholar
  30. Gough, D.O., 1981. Solar interior structure and luminosity variations. Solar Physics 74, 21–34.Google Scholar
  31. Grant, S.W.F., 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science 290-A, 261–294.Google Scholar
  32. Grotzinger, J.P., 1989. Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform achetype. In: Crevello, P.D., Wilson, J.L., Sarg, J.F. and Read, J.F. (eds.), Controls on Carbonate Platform and Basin Development. Soc. Economic Paleontol. Mineralog., Spec. Publ. 44, 79–106.Google Scholar
  33. Grotzinger, J.P., 1990. Geochemical model for Proterozoic stromatolite decline. Amer. J. Sci. 290-A, 80–103.Google Scholar
  34. Hayes, J.M., Des Marais, D.J., Lambert, I.B., Strauss, H. and Summons, R., 1992a. Proterozoic biogeochemistry. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multi-disciplinary Study. pp. 81–134; Cambridge University Press, Cambridge.Google Scholar
  35. Hayes, J.M., Lambert, I.B. and Strauss, H., 1992b. The sulfur isotopic record. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Study. pp. 129–132; Cambridge University Press, Cambridge.Google Scholar
  36. Hofmann, H.J., 1992. Proterozoic carbonaceous films. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Study. pp. 349–357; Cambridge University Press, New York.Google Scholar
  37. Hofmann, H.J., 1994, in press. Proterozoic carbonaceous compressions (“metaphytes” and “worms”). In: Bengtson, S. (ed.), Early Life on Earth. Nobel Symp. N 84, Björkborn, Karlskoga, 271–286; Columbia University Press.Google Scholar
  38. Hofmann, H.J., Narbonne, G.M. and Aitken, J.D., 1990. Ediacaran remains from intertillite beds in northwestern Canada. Geology 18, 1199–1202.Google Scholar
  39. Holland, H.D., 1984. The Chemical Evolution of the Atmosphere and Oceans. pp. 1–582; Princeton University Press, Princeton, N.J.Google Scholar
  40. Holland, H.D., 1992. Major aspects of atmospheric evolution during the Precambrian. 29th Int. Geol. Congr., Kyoto, Abstr. 1, p. 170.Google Scholar
  41. Holland, H.D., 1994, in press. Early Proterozoic atmospheric change. In: Bengtson, S. (ed.), Early Life on Earth. Nobel Symp. N 84, Björkborn, Karlskoga, 185–193; Columbia University Press.Google Scholar
  42. Holland, H.D. and Kasting, J.F., 1992. The environment of the Archean Earth. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Study. pp. 21–24; Cambridge University Press, New York.Google Scholar
  43. Holser, W.T., 1984. Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. In: Holland, H.D. and Trendall, A.F. (eds.), Patterns of Change in Earth Evolution. pp. 123–144; Springer, Berlin Heidelberg New York.Google Scholar
  44. Kasting, J.F., 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Research 34, 205–229.Google Scholar
  45. Kasting, J.F. and Ackerman, T.P., 1986. Climatic consequences of very high CO2 levels in earth’s early atmosphere. Science 234, 1383–1385.Google Scholar
  46. Kaufman, A.J. and Knoll, A.H., 1992. Neoproterozoic variations in the isotopic composition of sea-water: stratigraphic and biogeochemical implications. 29th Int. Geol. Congr., Kyoto, Abstr. 1, p. 239.Google Scholar
  47. Kaufman, A.J., Hayes, J.M., Knoll, A.H. and Germs, G.J.B., 1991. Isotopic compositions of carbonates and organic carbon from Upper Proterozoic successions in Namibia: stratigraphic variation and the effect of diagenesis and metamorphism. Precambrian Research 49, 301–327.Google Scholar
  48. Kirschvink, J.L., 1992a. A paleogeographic model for Vendian and Cambrian time. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Study. pp. 567–582; Cambridge University Press, Cambridge.Google Scholar
  49. Kirschvink, J.L., 1992b. Magnetite biomineralization and the evolution of eucaryotic cell. 29th Int. Geol. Congr., Kyoto, Abstr. 2, p. 340.Google Scholar
  50. Klein, C. and Beukes, N.J., 1989. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa. Economic Geol. 84, 1733–1774.Google Scholar
  51. Klein, C., Beukes, N.J., Holland, H.D., Kasting, J.F., Kump, L.R. and Lowe, D.R., 1992. Proterozoic atmosphere and ocean. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Study. pp. 135–174; Cambridge University Press, Cambridge.Google Scholar
  52. Knoll, A.H., 1991. End of Proterozoic Eon; Scientific American 256 (4), 64–73.Google Scholar
  53. Knoll, A.H., 1992. Neoproterozoic evolution and environmental change. In: Bengtson, S. (ed.), Early Life on Earth. Nobel Symp. N 84, Björkborn, Karlskoga, 261–270; Columbia University Press.Google Scholar
  54. Knoll, A.H., Hayes, J.M., Kaufman, A.J., Sweet, K. and Lambert, I., 1986. Secular variations in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–838.Google Scholar
  55. Krupatkina, D.K., Berlan, B. and Maestrini, C., 1985. Leader of the primary production is an ocean, not land. Priroda 4, 56–62 [in Russian].Google Scholar
  56. Krylov, I.N., 1975. Stromatolites of the Ripheanand Phanerozoic of the USSR. pp. 1–243; Nauka, Moscow [in Russian].Google Scholar
  57. Krylov, I.N., 1985. Stromatolites in the Upper Precambrian stratigraphy: problem — 85. Izvestiya Akad. Nauk SSSR, ser. geol. 11, 44–55 [in Russian].Google Scholar
  58. Krylov, I.N. and Zavarzin, G.A., 1988. Sedimentation conditions for the carbonate rocks of the Late Riphean, South Urals. Doklady Akad. Nauk SSSR 300 (5), 1223–1225 [in Russian].Google Scholar
  59. Lambert, I.B. and Donnelly, T.H., 1991. Atmospheric oxigen level in the Precambrian: a review of isotopic and geological evidence. Palaeogeogr., Palaeoclimatol., Palaeoecol. (Global and Planetary Change Section) 97, 83–91.Google Scholar
  60. Leont’ev, O.K., 1982. Physical geography of the world ocean. pp. 1–198; Moscow State University, Moscow [in Russian].Google Scholar
  61. Lowe, D.L., 1992. Major events in the geological development of the Precambrian Earth. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Study. pp. 67–75; Cambridge University Press, Cambridge.Google Scholar
  62. Lowenstam, H.A. and Weiner, S., 1989. On Bio-mineralization. pp. 1–324; Oxford University Press, New York.Google Scholar
  63. McLaughlin, P.J. and Dayhoff, M.O., 1973. Eucaryote evolution: a view based on cytochrome c sequence data. J. molecular evol. 2, 99–116.Google Scholar
  64. Mendelson, K.V. and Schopf, J.W., 1992. Proterozoic and Early Cambrian acritarchs. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Study. pp. 219–232; Cambridge University Press, Cambridge.Google Scholar
  65. Monster, J., Appel, P.W.U., Thode, H.G., Schidlowski, M., Carmichael, C.M. and Bridgewater, D., 1979. Sulfur isotope studies on early Archean sediments from Isua, West Greenland. Implications for the antiquity of bacterial sulfate reduction. Geochim. Acta 43, 405–413.Google Scholar
  66. Monty, C.L.V., 1974. Precambrian background and Phanerozoic history of stromatolitic communities, an overview. Ann. Soc. Géol. Belg. 96, 585–624.Google Scholar
  67. Muir, M.D., 1978. Microenvironments of some modern and fossil iron- and manganese-oxidizing bacteria. In: Krumbein, W.E. (ed.), Environmental Biogeochemistry and Geomicrobiology. Ann Arbor Sci. Pub., Ann Arbor Ml, 937–944.Google Scholar
  68. Ourisson, G., 1987. A Hypothetical phylogeny for membrain reinforces. Chimia 6, 12–14.Google Scholar
  69. Ourisson, G., 1990. The general role of terpenes and their global significance. Pure and Applied Chemistry 60, 1401–1404.Google Scholar
  70. Riding, R. and Voronova, L., 1982. Calcified cyanophytes and Precambrian-Cambrian transition. Naturwissenschaften 69, 498–499.Google Scholar
  71. Riding, R. and Voronova, L., 1984. Assemblages of calcareous algae near the Precambrian-Cambrian boundary in Siberia and Mongolia. Geol. Mag. 121, 205–210.Google Scholar
  72. Ronov, A.B., 1964. Common tendencies in the chemical evolution of the earth’s crust, ocean and atmosphere. Geocemistry International 1, 713–737.Google Scholar
  73. Rozanov, A.Yu., 1986. What had happened 600 million years ago? pp. 1–95; Nauka, Moscow [In Russian].Google Scholar
  74. Rozanov, A.Yu. and Zhuravlev, A.Yu., 1992. The Lower Cambrian fossil record of the Soviet Union. In: Lipps, J.H. and Signor, P.W. (eds.), Origin and Early Evolution of the Metazoa. pp. 205–282; Plenum Press, New York.Google Scholar
  75. Runnegar, B., 1982a. A molecular-clock data for the origin of the animal phyla. Lethaia 15, 199–205.Google Scholar
  76. Runnegar, B., 1982b. Oxygen requirements, a biology and phylogenetic significance of the late Precambrian worm Dickinsonia and the evolution of the burrowing habit. Alcheringa 6, 223–239.Google Scholar
  77. Schopf, J.W., 1992a. The oldest fossils and what they mean. In: Schopf, J.W. (ed.), Major Events in the History of Life. pp. 29–61; Jones and Bartlett Publishers Inc., Boston.Google Scholar
  78. Schopf, J.W., 1992b. Patterns of Proterozoic micro-fossil diversity: an initial tentative analysis. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Study. pp. 529–552; Cambridge University Press, Cambridge.Google Scholar
  79. Schopf, J.W., 1992c. Proterozoic procaryotes: affinities, geologic distribution, and evolutionary trends. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Study. pp. 195–218; Cambridge University Press, Cambridge.Google Scholar
  80. Schopf, J.W. and Klein, C. (eds.), 1992. The Proterozoic Biosphere. A Multidisciplinary Study. pp. 1–1348; Cambridge University Press, Cambridge -New York.Google Scholar
  81. Seilacher, A., 1984. Late Precambrian and early Cambrian Metazoa: preservational or real extinctions? In: Holland, H.D. and Trendall, A.F. (eds.), Patterns of change in earth evolution. pp. 159–168; Dahlem Konferenzen, Springer, Berlin Heidelberg New York.Google Scholar
  82. Seilacher, A., 1989. Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22, 229–239.Google Scholar
  83. Seilacher, A., 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society of London 149, 607–613.Google Scholar
  84. Semikhatov, M.A., 1976. Experience in stromatolite study in the USSR. In: Walter, M.R. (ed.), Stromatolites. Developments in Sedimentology 20, 337–358; Elsevier, Amsterdam.Google Scholar
  85. Semikhatov, M.A., Fedonkin, M.A., Weiss, A.F., Volkova, N.A., Gnilovskaya, M.B., Golovenok, V.K., Sergeev, V.N., Sochava, A.V., Shenfil, V.Yu. and Yakshin, M.S., 1990. Paleontological method in the stratigraphy of the Precambrian. 2nd All-Union Conf. “General Questions of the Division of the Precambrian in the USSR”, Ufa, Abstr., 35–45 [in Russian].Google Scholar
  86. Semikhatov, M.A. and Raaben, M.E., 1993. Dynamics of systematic diversity of Riphean and Vendian stromatolites of northern Eurasia. Stratigraphy. Geological Correlation vol. 1 N2, 9–12 [in Russian].Google Scholar
  87. Semikhatov, M.A. and Raaben, M.E., 1995, in press. Dynamics of global diversity in Proterozoic stromatolites. Stratigraphy. Geological Correlation.Google Scholar
  88. Sochava, A.V., 1993. Isotopic geochemistry of sulfur, carbon and strontium, composition of atmosphere and evolutionary events of the Vendian and Early Cambrian. Stratigraphy. Geological Correlation [in Russian].Google Scholar
  89. Sochava, A.V. and Podkovyrov, V.N., 1992. The evolution of the carbonate rocks composition during Meso- and Neoproterozoic. 29th Int. Geol. Congr., Kyoto, Abstr., p. 302.Google Scholar
  90. Sochava, A.V. and Podkovyrov, V.N., 1993. Evolution of the composition of carbonate rocks in the Late Precambrian, Stratigraphy. Geological Correlation 1(4), 11–26 [in Russian].Google Scholar
  91. Sokolov, B.S. and Iwanowski, A.B. (eds.), 1990. The Vendian System. Vol. 1. Paleontology, 1–383; Springer, Berlin Heidelberg New York.Google Scholar
  92. Stebbins, G.L., Jr., 1974. Adaptive radiation and the origin of form in the earliest multicellular organisms. Systematic Zoology 22, 478–485.Google Scholar
  93. Summons, R., 1988. Biomarkers: molecular fossils. Short Courses in Paleontology 1, 98–113.Google Scholar
  94. Summons, R.E. and Walter, M.R., 1990. Molecular fossils and microfossils of procaryotes and protists from Proterozoic sediments. Amer. J. Sci. 290-A, 212–244.Google Scholar
  95. Timofeyev, P.P., Kholodov, V.N. and Zverev, V.P., 1986a. Water balance of recent sedimentary process. Doklady AN SSSR 287(6), 1435–1439 [in Russian].Google Scholar
  96. Timofeyev, P.P., Kholodov, V.N. and Zverev, V.P., 1986b. Sedimentary cover of Earth as possible source of the hydrosphere. Doklady AN SSSR 288(1), 197–200 [in Russian].Google Scholar
  97. Timofeyev, P.P., Kholodov, V.N. and Zverev, V.P., 1988. Hydrosphere and evolution of Earth. Izvestiya AN SSSR 6, 3–19 [in Russian].Google Scholar
  98. Towe, K.M., 1988. Early biochemical innovations, oxigen and earth history. In: Broadhead, T.W. (ed.), Molecular Evolution and the Fossil Record. Paleontol. Soc, Short Course 1, 114–129.Google Scholar
  99. Towe, K.M., 1994. Earth’s early atmosphere: constraints and opportunities for early evolution. In: Bengtson, S. (ed.), Early Life on Earth. Nobel Symp. N 84, Björkborn, Karskoga, 13–23; Columbia University Press.Google Scholar
  100. Tucker, M.E., 1983. Diagenesis, geochemistry and origin of a Precambrian dolomite: the Beck Spring Dolomite of eastern California. J. sediment. Petrology 53, 1097–1119.Google Scholar
  101. Valentine, J.W., 1991. Major factors in the rapidity and extent of the metazoan radiation during the Proterozoic-Phanerozoic transition. In: Simonetta, A.M. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. pp. 11–13; Cambridge University Press, Cambridge.Google Scholar
  102. Veizer, J. and Jansen, S.L., 1979. Basement and sedimentary recycling and continental evolution. J. Geol. 87, 341–370.Google Scholar
  103. Veizer, J. and Jansen, S.L., 1985. Basement and sedimentary recycling, 2: time dimension to global tectonics. J. Geol. 93, 625–643.Google Scholar
  104. Vidal, G., 1994. Early ecosystems — limitations imposed by the fossil record. In: Bengtson, S. (ed.), Early Life on Earth. Nobel Symp. N 84, Björkborn, Karskoga, 247–259; Columbia University Press.Google Scholar
  105. Vidal, G. and Knoll, A.H., 1982. Radiations and extinctions of plankton in the Late Precambrian and Early Cambrian. Nature 297, 57–60.Google Scholar
  106. Vidal, G. and Knoll, A.H., 1983. Proterozoic plankton. Geol. Soc. Amer. Mem. 161, 265–277.Google Scholar
  107. Walker, J.C.G., 1985. Carbon dioxide on the early earth. Origin of Life 16, 117–127.Google Scholar
  108. Walker, J.C.G., 1987. Was the Archaean biosphere upside down? Nature 329, 710–712.Google Scholar
  109. Walter, M.R., 1992. Stratigraphic distribution of stromatolites and allied structures. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Study. pp. 507–509; Cambridge University Press, Cambridge.Google Scholar
  110. Walter, M.R., Grotzinger, J.P. and Schopf, J.W., 1992. Proterozoic stromatolites. In: Schopf, J.W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Study. pp. 253–260; Cambridge University Press, Cambridge.Google Scholar
  111. Walter, M.R. and Heys, G.R., 1985. Links between the rise of the Metazoa and the decline of the stromatolites. Precambrian Research 29, 149–174.Google Scholar
  112. Wilde, P. and Berry, W.B.N., 1982. Progressive ventilation of the oceans — Potential for return to anoxic conditions in the post-Paleozoic. In: Schlanger, S.O. and Cita, M.B. (eds.), Nature and Origin of Cretaceous Carbon-rich Facies. pp. 209–224; Academic Press, London.Google Scholar
  113. Yankauskas, T.V., ed., 1989. Microfossils from the Precambrian of the USSR. pp. 1–190; Nauka, Leningrad [in Russian].Google Scholar
  114. Zakrutkin, V.E., 1993. On the rates of the organic matter accumulation in the Precambrian and Phanerozoic. In: Sokolov, B.S. and Rozanov, A.Yu. (eds.), The Problems of the pre-Antropogene evolution of biosphere; Nauka, Moscow.Google Scholar
  115. Zavarzin, G.A., 1984. Bacteria and composition of atmosphere. pp. 1–199; Nauka, Moscow [in Russian].Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Mikhail A. Fedonkin
    • 1
  1. 1.Paleontological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations