Skip to main content

Assessing the Role of E1A in the Differential Oncogenicity of Group A and Group C Human Adenoviruses

  • Chapter
Book cover The Molecular Repertoire of Adenoviruses III

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/3))

Abstract

It was first shown In 1962 that human adenovirus (Ad) types 12 and 18 rapidly induce undifferentiated sarcomas in newborn hamsters (Huebner et al. 1962; Trentin et al. 1962). In the decade that followed this initial discovery, numerous investigators confirmed the finding and showed that such tumors could be induced in other rodent species and that, depending upon the route of inoculation, neurogenic, neuroepithelial, medulloblastic, adenocarcinomatous, and retino-blastoma-like tumors were induced. During that same period it was shown that most of the other human adenoviruses either do not induce tumors in rodents or do so slowly and with low efficiency. In fact, it is now known that of the five viral groups of human adenoviruses defined on the basis of nucleic acid homology (and most likely also the more recently identified enteric adenoviruses), only those of group A (Ad12, Ad18, and Ad31) are highly oncogenic. Viruses of group B (for example, Ad3 and Ad7) are weakly oncogenic and induce tumors slowly and with low frequency. Viruses of group C (Ad1, Ad2, and Ad5) are considered to be nononcogenic, and those of groups D and E which have been tested are likewise negative for tumor induction, with the signal exception of Ad9. It is of considerable interest that this virus induces mammary fibroadenomas, some of which progress into malignant tumors in female Wistar/Furth rats (Jonsson and Ankerst 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackrill AM, Blair GE (1988) Regulation of major histocompatibility class I gene expression at the level of transcription in highly oncogenic adenovirus transformed rat cells. Oncogene 3: 483–487

    PubMed  CAS  Google Scholar 

  • Ackrill AM, Blair GE (1989) Nuclear proteins binding to an enhancer of the major histocompatibility class I promoter: differences between highly oncogenic and nononcogenic adenovirus-transformed rat cells. Virology 172: 643–646

    Article  PubMed  CAS  Google Scholar 

  • Bellgrau D, Walker IA, Cook JL (1988) Recognition of adenovirus E1A gene products on immortalized cell surfaces by cytotoxic T lymphocytes. J Virol 62: 1513–1519

    PubMed  CAS  Google Scholar 

  • Berk AJ (1986) Adenovirus promoters and E1A transactivation. Annu Rev Gen 20: 45–79

    Article  CAS  Google Scholar 

  • Berk AJ, Lee F, Harrison T, Williams J, Sharp PA (1979) Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs. Cell 17: 935–944

    Article  PubMed  CAS  Google Scholar 

  • Bernards R, Houweling A, Schrier PI, Bos JL, van der Eb AJ (1982) Characterization of cells transformed by Ad5/Ad12 hybrid early region I plasmids. Virology 120: 422–432

    Article  PubMed  CAS  Google Scholar 

  • Bernards R, Schrier PI, Houweling A, Box JL, van der Eb AJ, Zylstra M, Melief CJM (1983) Tumorigenicity of cells transformed by adenovirus type 12 by evasion of T-cell immunity. Nature 350: 776–779

    Article  Google Scholar 

  • Bernards R, de Leeuw M, Vaessen MJ, van der Eb AJ (1984) Oncogenicity by adenovirus is not determined by the transforming region only. J Virol 50: 847–853

    PubMed  CAS  Google Scholar 

  • Borelli E, Hen R, Chambon P (1984) Adenovirus-2 E1A products repress enhancer-induced stimulation of transcription. Nature 312: 608–612

    Article  Google Scholar 

  • Bos JL, Polder LJ, Bernards R, Schrier PI, van den Elsen PJ, van der Eb AJ, van Ormondt H (1981) The 2.2 kb E1B mRNA of human Ad12 and Ad5 codes for two tumor antigens starting at different AUG triplets. Cell 27: 121–131

    Article  PubMed  CAS  Google Scholar 

  • Boulanger PA, Blair GE (1991) Expression and interactions of human adenovirus oncoproteins. Biochem J 275: 281–299

    PubMed  CAS  Google Scholar 

  • Boyd JM, Subramanian T, Schaefer U, La Regina M, Bayley S, Chinnadurai G (1993) A region in the C-terminus of adenovirus 2/5 E1A protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 12: 469–478

    PubMed  CAS  Google Scholar 

  • Byrd PJ, Grand RJA, Breiding D, Williams J, Gallimore PH (1988) Host range mutants of adenovirus type 12 E1 defective for lytic infection, transformation and oncogenicity. Virology 163: 155–165

    Article  PubMed  CAS  Google Scholar 

  • Cook JL, Hibbs JB Jr, Lewis AM Jr (1982) DNA virus-transformed hamster cell-host effector cell interactions: level of resistance to cytolysis correlated with tumorigenicity. Int J Cancer 30: 795–803

    Article  PubMed  CAS  Google Scholar 

  • Cortese-Hassett A, Misra D, Kunz H, Gill TJ (1991) The major histocompatibility complex of the rat. In: Srivastava R, Ram R, Tyle BP (eds) Immunogenetics of the major histocompatibility complex. VCH, Weinheim, pp 309–347

    Google Scholar 

  • Debbas M, White E (1993) Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 7: 546–554

    Article  PubMed  CAS  Google Scholar 

  • Eager KB, Williams J, Breiding D, Pan S, Knowles B, Appela E, Ricciardi RP (1985) Expression of histocompatibility antigens H-2K, D, and L is reduced in adenovirus-12-transformed mouse cells and is restored by interferon γ Proc Natl Acad Sci USA 82: 5525–5529

    Article  PubMed  CAS  Google Scholar 

  • Edbauer D, Lamberti C, Tong J, Williams J (1988) Adenovirus type 12 E1B 19-kilodalton protein is not required for oncogenic transformation in rats. J Virol 62: 3265–3273

    PubMed  CAS  Google Scholar 

  • Egan C, Jelsma TN, Howe JA, Bayley ST, Ferguson B, Branton PE (1988) Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5. Mol Cell Biol 8: 3955–3959

    PubMed  CAS  Google Scholar 

  • Egan C, Bayley ST, Branton PE (1989) Binding of the RB1 protein to E1A products is required for adenovirus transformation. Oncogene 4: 383–388

    PubMed  CAS  Google Scholar 

  • Engel DA, Müller U, Gedrich RW, Eubanks JS, Shenk T (1991) Induction of c-fos mRNA and AP-1 DNA-binding activity by cAMP in cooperation with either the adenovirus 243- or the adenovirus 289-amino acid E1A protein. Proc Natl Acad Sci USA 88: 3957–3961

    Article  PubMed  CAS  Google Scholar 

  • Faha B, Ewen M, Tsai L, Livingston DM, Harlow E (1992) Interaction between human cyclin A and adenovirus E1A-associated p107 protein. Science 255: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Föhring B, Gallimore PH, Mellow GH, Raska K Jr (1983) Adenovirus type 12 specific cell surface antigen in transformed cells is a product of the E1 b early region. Virology 131: 463–472

    Article  PubMed  Google Scholar 

  • Friedman DJ, Ricciardi RP (1988) Adenovirus type 12 ElAgene represses accumulation of MHC class I mRNA at the level of transcription. Virology 165: 303–305

    Article  PubMed  CAS  Google Scholar 

  • Gallimore PH (1972) Tumour production in immunosuppressed rats with cells transformed in vitro by adenovirus type 2. J Gen Virol 16: 99–102

    Article  PubMed  CAS  Google Scholar 

  • Gallimore PH, Williams J (1982) An examination of adenovirus type 5 mutants for their ability to induce group C adenovirus tumor-specific antigenicity in rats. Virology 120: 146–156

    Article  PubMed  CAS  Google Scholar 

  • Gallimore PH, Byrd PJ, Grand RJA (1984a) Adenovirus genes involved in transformation. What determines the oncogenic phenotype? In: Rigby PWJ, Wilkie NM (eds) Viruses and cancer. Symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, pp 125–172

    Google Scholar 

  • Gallimore P, Byrd P, Grand R, Whittaker J, Breiding D, Williams J (1984b) An examination of the transforming and tumor-inducing capacity of a number of adenovirus type 12 early region 1, host-range mutants and cells transformed by subgenomic fragments of Ad12 E1 region. Cancer Cells 2:519–526

    CAS  Google Scholar 

  • Ge R, Kralli A, Weinmann R, Ricciardi RP (1992) Down-regulation of the major histocompatibility complex class I enhancer in adenovirus type 12-transformed cells is accompanied by an increase in factor binding. J Virol 66: 6969–6978

    PubMed  CAS  Google Scholar 

  • Gedrich RW, Bayley ST, Engel DA (1992) Induction of AP-1 DNA-binding activity and c-fos mRNA by the adenovirus 243R E1A protein and cyclic AMP requires domains necessary for transformation. J Virol 66:5849–5859

    PubMed  CAS  Google Scholar 

  • Gill TJ, Cramer DV, Kunz HW (1978) The major histocompatibility complex—comparison in the mouse, man, and the rat. Am J Pathol 90: 737–777

    PubMed  Google Scholar 

  • Giordano A, McCall C, Whyte P, Franza BR (1991) Human cyclin A and the retinoblastoma protein interact with similar but distinguishable sequences in the adenovirus E1A gene product. Oncogene 6:481–485

    PubMed  CAS  Google Scholar 

  • Graham FL, Harrison T, Williams J (1978) Defective transforming capacity of adenovirus type 5 host-range mutants. Virology 86: 10–21

    Article  PubMed  CAS  Google Scholar 

  • Graham FL (1984) Transformation by and oncogenicity of human adenoviruses. In: Ginsberg HS (ed) The adenoviruses. Plenum, New York, pp 339–398

    Google Scholar 

  • Graham FL, Abrahams PJ, Mulder C, Heijneker HL, Warnaar SO, de Vries FAJ, Fiers W, van der Eb A (1974) Studies on in vitro transformation by DNA and DNA fragments of human adenoviruses and simian virus 40. Cold Spring Harbor Symp Quart Biol 39: 637–650

    Google Scholar 

  • Haddada H, Lewis AM Jr, Sogn JA, Coligan JE, Cook JL, Walker TA, Levine AS (1986) Tumorigenicity of hamster and mouse cells transformed by adenovirus types 2 and 5 is not influenced by the level of class I major histocompatibility antigens expressed on the cells. Proc Natl Acad Sci USA 83: 9684–9688

    Article  PubMed  CAS  Google Scholar 

  • Haddada H, Sogn JA, Coligan JE, Carbone M, Dixon K, Levine AS, Lewis AM Jr, (1988) Viral gene inhibition of class I major histocompatibility antigen expression: not a general mechanism governing the tumorigenicity of adenovirus type 2-, adenovirus type 12-, and simian virus 40-transformed Syrian hamster cells. J Virol 62: 2755–2761

    PubMed  CAS  Google Scholar 

  • Haley KP, Overhauser J, Babiss LE, Ginsberg HS, Jones NC (1984) Transformation properties of type 5 adenovirus mutants that differentially express the E1A gene products. Proc Natl Acad Sci USA 81: 5734–5738

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Franza R Jr, Schley C (1985) Monoclonal antibodies specific for adenovirus early region 1A proteins: extensive heterogeneity in early region 1A products. J Virol 55: 533–546

    PubMed  CAS  Google Scholar 

  • Harlow E, Whyte P, Franza BR Jr, Schley C (1986) Association of adenovirus early-region 1A protein with cellular polypeptides. Mol Cell Biol 6: 1579–1589

    PubMed  CAS  Google Scholar 

  • Hearing P, Shenk T (1985) Sequence-independent autoregulation of the adenovirus type 5 E1A transcription unit. Mol Cell Biol 5: 3214–3221

    PubMed  CAS  Google Scholar 

  • Houweling A, Van den Elsen PJ, van der Eb AJ (1980) Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology 105: 537–550

    Article  PubMed  CAS  Google Scholar 

  • Huebner RJ, Rowe WP, Lane WT (1962) Oncogenic effects in hamsters of human adenovirus types 12 and 18. Proc Natl Acad Sci USA 48: 2051–2058

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz DR, Chinnadurai G (1985) Evidence that a second tumor antigen coded by adenovirus early region E1a is required for efficient cell transformation. Proc Natl Acad Sci USA 82: 163–167

    Article  PubMed  CAS  Google Scholar 

  • Javier RT (1994) Adenovirus type 9 E4 open reading frame 1 encodes a transforming protein required for the production of mammary tumors in rats. J Virol 68: 3917–3924

    PubMed  CAS  Google Scholar 

  • Javier RT, Raska K, Shenk T (1992) Requirement for the adenovirus type 9 E4 region in production of mammary tumors. Science 257: 1267–1271

    Article  PubMed  CAS  Google Scholar 

  • Jelinek T, Graham FL (1992) Recombinant human adenoviruses containing hybrid adenovirus type 5 (Ad5)/Ad12 E1A genes: characterization of hybrid E1A proteins and analysis of transforming activity and host range. J Virol 66: 4117–4125

    PubMed  CAS  Google Scholar 

  • Jelinek T, Pereira DS, Graham FL (1994) Tumorigenicity of adenovirus-transformed rodent cells is influenced by at least two regions of adenovirus type 12 early region 1A. J Virol 68: 888–896

    PubMed  CAS  Google Scholar 

  • Jelsma TN, Howe JA, Mymryk JS, Evelegh CM, Cunniff NFA, Bayley ST (1989) Sequences in E1A proteins of human adenovirus 5 required for cell transformation, repression of a transcriptional enhancer, and induction of proliferating cell nuclear antigen. Virology 171: 120–130

    Article  PubMed  CAS  Google Scholar 

  • Jochemsen AG, Bos JL, van der Eb AJ (1984) The first exon of region E1A genes of adenoviruses 5 and 12 encodes a separate functional protein domain. EMBO J 3: 2923–2927

    PubMed  CAS  Google Scholar 

  • Jones N, Shenk T (1979) An adenovirus type 5 early gene function regulates expression of other early viral genes. Proc Natl Acad Sci USA 76: 3665–3669

    Article  PubMed  CAS  Google Scholar 

  • Jones NC (1992) The multifunctional products of the adenovirus E1A gene. In: Doerfler W, Bohm P (eds) Malignant transformation by DNA viruses. VCH, Weinheim, pp 87–113

    Google Scholar 

  • Jonsson N, Ankerst J (1977) Studies on adenovirus type 9-induced mammary fibroadenomas in rats and their malignant transformation. Cancer 39: 2513–2519

    Article  PubMed  CAS  Google Scholar 

  • Kao H, Nevins JR (1983) Transcriptional activation and subsequent control of the human heat shock gene during adenovirus infection. Mol Cell Biol 3: 2058–2065

    PubMed  CAS  Google Scholar 

  • Kast WM, Offringa R, Peters PJ, Voordouw AC, Meloen RH, van der Eb AJ, Melief CJM (1989) Eradication of adenovirus E1-induced tumors by E1A-specific cytotoxic T lymphocytes. Cell 59: 603–614

    Article  PubMed  CAS  Google Scholar 

  • Katoh S, Ozawa K, Kondoh S, Soeda E, Israel A, Shiroki K, Fujinaga K, Itakura K, Gachelin G, Yokoyama K (1990) Identification of sequences responsible for positive and negative regulation by E1A in the promoter of H-2Kbml class I MHC gene. EMBO J 9: 127–135

    PubMed  CAS  Google Scholar 

  • Kimelmann D, Miller JS, Porter D, Roberts BE (1985) E1A regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related. J Virol 53: 399–409

    Google Scholar 

  • Lamberti C, Williams J (1990) Differential requirement for adenovirus type 12 E1A gene products in oncogenic transformation. J Virol 64: 4997–5007

    PubMed  CAS  Google Scholar 

  • Larsen PL, Tibbetts C (1987) Adenovirus E1A gene autorepression: revertants of an E1A promoter mutation encode altered E1A proteins. Proc Natl Acad Sci USA 84: 8185–8189

    Article  PubMed  CAS  Google Scholar 

  • Lewis AM Jr, Cook JL (1982) Spectrum of tumorigenic phenotypes among adenovirus 2, adenovirus 12 and simian virus 40 transformed Syrian hamster cells defined by host cellular immune-tumor cell interactions. Cancer Res 42: 939–944

    PubMed  Google Scholar 

  • Licht JD, Grossel MU, Figge J, Hansen UM (1990) Drosophila Krüppel protein is a transcriptional repressor. Nature 346: 76–79

    Article  PubMed  CAS  Google Scholar 

  • Lillie JW, Green M, Green MR (1986) An adenovirus E1A protein region required for transformation and transcriptional repression. Cell 46: 1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Lillie JW, Loewenstein PM, Green MR, Green M (1987) Functional domains of adenovirus type 5 E1A proteins. Cell 50: 1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Lowe SW, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7: 535–545

    Article  PubMed  CAS  Google Scholar 

  • McLorie W, McGlade CJ, Takayesu D, Branton PE (1991) Individual adenovirus E1B proteins induce transformation independently but by additive pathways. J Gen Virol 72: 1467–1471

    Article  PubMed  CAS  Google Scholar 

  • Meijer I, van Dam H, Boot AJM, Bos JL, Zantema A, van der Eb AJ (1991) Co-regulated expression of junβ and MHC class I genes in adenovirus-transformed cells. Oncogene 6: 911–916

    PubMed  CAS  Google Scholar 

  • Mellow GH, Föhring B, Dougherty J, Gallimore PH, Raska K (1984) Tumorigenicity of adenovirus-transformed rat cells and expression of class I major histocompatibility antigen. Virology 134: 951–961

    Article  Google Scholar 

  • Miller BW, Williams J (1987) Cellular transformation by adenovirus type 5 is influenced by the viral DNA polymerase. J Virol 61, 11: 3630–3634

    PubMed  CAS  Google Scholar 

  • Montell C, Courtois G, Eng C, Berk A (1984) Complete transformation by adenovirus 2 requires both E1A proteins. Cell 36: 951–961

    Article  PubMed  CAS  Google Scholar 

  • Moran E, Mathews MB (1987) Multiple functional domains in the adenovirus E1A gene. Cell 48: 177–178

    Article  PubMed  CAS  Google Scholar 

  • Moran E, Zerler B, Harrison TM, Mathews MB (1986) Identification of separate domains in the E1A gene for immortalization activity and the activation of virus early genes. Mol Cell Biol 6: 3470–3480

    PubMed  CAS  Google Scholar 

  • Mymryk JS, Bayley ST (1993) Induction of gene expression by exon 2 of the major E1A proteins of adenovirus type 5. J Virol 67: 6922–6928

    PubMed  CAS  Google Scholar 

  • Nevins JR (1981) Mechanism of activation of early viral transcription by the adenovirus E1A gene product. Cell 26: 213–220

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258: 424–429

    Article  PubMed  CAS  Google Scholar 

  • Omelles DA, Shenk T (1991) Localization of the adenovirus early region 1B 55-kilodalton protein during lytic infection: association with nuclear viral inclusions requires the early region 4 34-kilodalton protein. J Virol 65: 424–439

    Google Scholar 

  • Ozawa K, Hagiwara H, Tang X, Saka F, Kitabayashi I, Shiroki K, Fujinaga K, Israel A, Gachelin G, Yokoyama K (1993) Negative regulation of the gene for H-2kb class I antigen by adenovirus 12-E1A is mediated by a CAA repeated element. J Biol Chem 268: 27258–27268

    PubMed  CAS  Google Scholar 

  • Pilder S, Moore M, Logan J, Shenk T (1986) The adenovirus E1B-55K transforming protein modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol Cell Biol 6: 470–476

    PubMed  CAS  Google Scholar 

  • Pines J, Hunter T (1990) Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature 346: 760–763

    Article  PubMed  CAS  Google Scholar 

  • Quinlan MP, Douglas JL (1992) Immortalization of primary epithelial cells requires first and second exon functions of adenovirus type 5 12S. J Virol 66: 2020–2030

    PubMed  CAS  Google Scholar 

  • Quinlan MP, GrodzickerT (1987) Adenovirus E1A 12S protein induces DNA synthesis and proliferation in primary epithelial cells in both the presence and absence of serum. J Virol 61: 673–682

    PubMed  CAS  Google Scholar 

  • Quinlan MP, Sullivan N, Grodzicker T (1987) Growth factor(s) produced during infection with an adenovirus variant stimulates proliferation of nonestablished epithelial cells. Proc Natl Acad Sci USA 84:3283–3287

    Article  PubMed  CAS  Google Scholar 

  • Quinlan MP, Whyte P, Grodzicker T (1988) Growth factor induction by the adenovirus type 5 E1A 12S protein is required for immortalization of primary epithelial cells. Mol Cell Biol 8: 3191–3203

    PubMed  CAS  Google Scholar 

  • Raska K, Gallimore PH (1982) An inverse relation of the oncogenic potential of adenovirus-transformed cells and their sensitivity to killing by syngeneic natural killer cells. Virology 123: 8–18

    Article  PubMed  Google Scholar 

  • Rice SA, Klessig DF, Williams J (1987) Multiple effects of the 72-kDa, adenovirus-specified DNA binding protein on the efficiency of cellular transformation. Virology 156: 366–376

    Article  PubMed  CAS  Google Scholar 

  • Robbins PD, Horowitz JM, Mulligan RC (1990) Negative regulation of human c-fos expression by the retinoblastoma gene product. Nature 346: 668–671

    Article  PubMed  CAS  Google Scholar 

  • Roberts BE, Miller JS, Kimelmann D, Cepko CL, Lemischka IR, Mulligan RC(1985) Individual adenovirus type 5 early region 1A gene products elicit distinct alterations of cellular morphology and gene expression. J Virol 56: 404–413

    PubMed  CAS  Google Scholar 

  • Ron D (1994) Inducible growth arrest: new mechanistic insights. Proc Natl Acad Sci USA 91:1985–1986

    Article  PubMed  CAS  Google Scholar 

  • Ruley HE (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–606

    Article  PubMed  CAS  Google Scholar 

  • Saito I, Shiroki K, Shimojo H (1983) mRNA species and proteins of adenovirus type 12 transforming regions: identification of proteins translated from multiple coding stretches in 2.2 kb region 1B mRNA in vitro and in vivo. Virology 127: 272–289

    Article  PubMed  CAS  Google Scholar 

  • Sarnow P, Ho YS, Williams J, Levine AJ (1982) Adenovirus E1B-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54kd cellular protein in transformed cells. Cell 28:387–394

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Föhring B, Shenk T, Raska K Jr (1985) Tumorigenicity of adenovirus transformed cells: region E1A of adenovirus 12 confers resistance to natural killer cells. Virology 147: 413–421

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Urbanelli D, Raskova J, Shenk T, Raska K (1986) Adenovirus tumor-specific transplantation antigen is a function of the E1A early region. J Exp Med 163: 563–572

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Raska Jr K, Shenk T (1988) Adenovirus type 5 and type 12 recombinant viruses containing heterologous E1 genes are viable, transform rat cells, but are not tumorigenic in rats. Virology 166: 281–284

    Article  PubMed  CAS  Google Scholar 

  • Schneider JF, Fisher F, Goding CR, Jones NC (1987) Mutational analysis of the adenovirus E1A gene: the role of transcriptional regulation in transformation. EMBO J 6: 2053–2060

    PubMed  CAS  Google Scholar 

  • Schrier PI, Bernards R, Vaessen RTMJ, Houweling A, van der Eb AJ (1983) Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature 305: 771–775

    Article  PubMed  CAS  Google Scholar 

  • Shiroki K, Segawa K, Saito I, Shimojo H, Fujinaga K (1979) Products of the adenovirus 12 transforming genes and their functions. Cold Spring Harbor Symp Quant Biol 44: 533–540

    Google Scholar 

  • Shiroki K, Hashimoto S, Saito I, Fukui Y, Fukui Y, Hiroyuki K, Shimojo H (1984) Expression of the E4 gene is required for establishment of soft-agar colony-forming rat cell lines transformed by the adenovirus 12 E1 gene. J Virol 50 3: 854–863

    PubMed  CAS  Google Scholar 

  • Smith DH, Ziff EB (1988) The amino-terminal region of the adenovirus serotype 5 E1 a protein performs two separate functions when expressed in primary baby rat kidney cells. Mol Cell Biol 8: 3882–3890

    PubMed  CAS  Google Scholar 

  • Smith DH, Kegler D, Ziff EB (1985) Vector expression of adenovirus type 5 E1A proteins: evidence for E1A autoregulation. Mol Cell Biol 5: 2684–2696

    PubMed  CAS  Google Scholar 

  • Soddu S, Lewis AM Jr (1992) Driving adenovirus type 12-transformed BALB/c mouse cells to express high levels of class I major histocompatibility complex proteins enhances, rather than abrogates, their tumorigenicity. J Virol 66: 2875–2884

    PubMed  CAS  Google Scholar 

  • Spindler KR, Eng CY, Berk AJ (1985) An adenovirus early region 1A protein is required for maximal viral DNA replication in growth-arrested human cells. J Virol 53: 742–760

    PubMed  CAS  Google Scholar 

  • Stein RW, Corrigan M, Yaciuk P, Whelan J, Moran E (1990) Analysis of E1 A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J Virol 64: 4421–4427

    PubMed  CAS  Google Scholar 

  • Stephens C, Harlow E (1987) Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30kd and 35kd proteins. EMBO J 6: 2027–2035

    PubMed  CAS  Google Scholar 

  • Subramanian T, Kuppuswamy M, Nasr RJ, Chinnadurai G (1988) An N-terminal region of adenovirus E1A essential for cell transformation and induction of an epithelial cell growth factor. Oncogene 2: 105–112

    PubMed  CAS  Google Scholar 

  • Subramanian T, La Regina M, Chinnadurai G (1989) Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1a protein. Oncogene 4: 415–420

    PubMed  CAS  Google Scholar 

  • Takiff HE, Straus SE (1982). Early replicative block prevents the efficient growth of fastidious diarrhea-associated adenoviruses in cell culture. J Med Virol 9: 93–100

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Isselbacher KJ, Khoury G, Jay G (1985) Reversal of oncogenesis by the expression of a histocompatibility complex class I gene. Science 228: 26–30

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Takayuki Y, Bieberich C, Jay G (1988) Role of the major histocompatibility complex class I antigens in tumor growth and metastasis. Annu Rev Immunol 6: 359–380

    Article  PubMed  CAS  Google Scholar 

  • Telling GC, Williams J (1993) The E1B 19-kilodalton protein is not essential for transformation of rodent cells in vitro by adenovirus type 5. J Virol 67: 1600–1611

    PubMed  CAS  Google Scholar 

  • Telling GC, Williams J (1994) Constructing chimeric type 12/type 5 adenovirus E1A genes and using them to identify an oncogenic determinant of adenovirus type 12. J Virol 68, 2: 877–887

    PubMed  CAS  Google Scholar 

  • Trentin JJ, Yabe Y, Taylor G (1962) The quest for human cancer viruses. Science 137: 835–841

    Article  PubMed  CAS  Google Scholar 

  • Urbanelli D, Sawada Y, Raskova J, Jones NC, Shenk T, Raska K (1989) C-terminal domain of the adenovirus E1A oncogene product is required for induction of cytotoxic T lymphocytes and tumor-specific transplantation immunity. Virology 173: 607–614

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel SJL, van Laar T, The I, van der Eb AJ (1993) Large E1B proteins of adenovirus types 5 and 12 have different effects on p53 and distinct roles in cell transformation. J Virol 67: 5226–5234

    PubMed  Google Scholar 

  • van der Eb AJ, Zantema A (1992) Adenovirus oncogenesis. In: Doerfler W, Böhm P (eds) Malignant transformation by DNA viruses. VCH, Weinheim, pp 115–140

    Google Scholar 

  • van der Eb AJ, Mulder C, Graham FL, Houweling A (1977) Transformation with specific fragments of adenovirus DNAs. I. Isolation of specific fragments with transforming activity of adenovirus 2 and 5 DNA. Gene 2: 115–132

    Article  PubMed  Google Scholar 

  • van Ormondt H, Galibert F (1984) Nucleotide sequences of adenovirus DNAs. Curr Top Microbiol Immunol 110:73–142

    PubMed  Google Scholar 

  • Velcich A, Ziff E (1985) Adenovirus E1A proteins repress transcription from the SV40 early promoter. Cell 40:705–716

    Article  PubMed  CAS  Google Scholar 

  • Virtanen A, Pettersson U (1985) Organization of early region 1B of human adenovirus type 2: identification of four differentially spliced mRNAs. J Virol 54: 383–391

    PubMed  CAS  Google Scholar 

  • Wang HGH, Rikitake Y, Corrigan Carter M, Yaciuk P, Abraham SE, Zerler B, Moran E (1993a) Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J Virol 67: 476–488

    PubMed  CAS  Google Scholar 

  • Wang HGH, Yaciuk P, Ricciardi RR, Green M, Yokoyama K, Moran E (1993b) The E1A products of oncogenic adenovirus serotype 12 include amino-terminally modified forms able to bind the retinoblastoma protein but not p300. J virol 67: 4804–4813

    PubMed  CAS  Google Scholar 

  • White E, Cipriani R, Sabbatini P, Denton A (1991) Adenovirus E1B 19-kilodalton protein overcomes the cytotoxicity of E1A proteins. J Virol 656: 2968–2978

    Google Scholar 

  • Whyte PK, Buchovich J, Friend S, Raybuck M, Weinberg R, Harlow E (1988a) Association between an oncogene and an anti-oncogene; the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334: 124–129

    Article  PubMed  CAS  Google Scholar 

  • Whyte P, Ruley HE, Harlow E (1988b) Two regions of the adenovirus early region 1A proteins are required for transformation. J Virol 62: 257–265

    PubMed  CAS  Google Scholar 

  • Whyte P, Williamson NM, Harlow E (1989) Cellular targets for transformation by the adenovirus E1A proteins. Cell 56: 67–75

    Article  PubMed  CAS  Google Scholar 

  • Williams J (1973) Oncogenic transformation of hamster embryo cells in vfitro by adenovirus type 5. Nature 243: 162–163

    Article  PubMed  CAS  Google Scholar 

  • Williams J (1986) Adenovirus genetics. In: Doerfler W (ed) Adenovirus DNA: the viral genome and its expression. Nijhoff, The Hague, PP 247–309

    Google Scholar 

  • Williams J, Karger BD, Ho YS, Castiglia CL, Mann T, Flint SJ (1986) The adenovirus E1B 495R protein plays a role in regulating the transport and stability of viral late messages. Cancer Cells 4: 275–284

    CAS  Google Scholar 

  • Winberg G, Shenk T (1984) Dissection of overlapping functions within the adenovirus type 5 E1A gene. EMBO J 3: 1907–1912

    PubMed  CAS  Google Scholar 

  • Yaciuk P, Moran E (1991) Analysis with specific polyclonal antiserum indicates that the E1A-associated 300-kDa product is a stable nuclear phosphoprotein that undergoes cell cycle phase modification. Mol Cell Biol 11: 5389–5397

    PubMed  CAS  Google Scholar 

  • Yee SP, Branton PE (1985) Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology 147: 142–153

    Article  PubMed  CAS  Google Scholar 

  • Yew PR, Berk AJ (1992) Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. NAture 357: 82–85

    Article  PubMed  CAS  Google Scholar 

  • Zerler B, Moran E, Maruyama K, Moomaw J, Grodzicker T, Ruley HE (1986) Analysis of adenovirus E1A coding sequences which enable ras and pmt oncogenes to transform cultured primary cells. Mol Cell Biol 6: 887–899

    PubMed  CAS  Google Scholar 

  • Zerler B, Roberts RJ, Mathews MB, Moran E (1987) Different functional domains of the adenovirus E1A gene are involved in regulation of host cell cycle products. Mol Cell Biol 7: 821–829

    PubMed  CAS  Google Scholar 

  • Zhang S, Mak S, Branton PE (1992) Overexpression of the E1B 55-kilodalton (482R) protein of human adenovirus type 12 appears to permit efficient transformation of primary baby rat kidney cells in the absence of the E1B 19-kilodalton protein. J Virol 66: 2302–2309

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Williams, J., Williams, M., Liu, C., Telling, G. (1995). Assessing the Role of E1A in the Differential Oncogenicity of Group A and Group C Human Adenoviruses. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses III. Current Topics in Microbiology and Immunology, vol 199/3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79586-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79586-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79588-6

  • Online ISBN: 978-3-642-79586-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics