Skip to main content

Functional Anatomy of the Kidney

  • Chapter

Part of the Handbook of Experimental Pharmacology book series (HEP,volume 117)

Abstract

The kidney maintains the homeostasis of body fluids. This is accomplished by a complex process that involves, first, filtration of huge amounts of fluid and solutes from the blood across the wall of specialized capillaries of the glomerulus and, second, transepithelial transport of solutes and water along the tubular system connected to the glomerulus. In the tubular system solutes and water are reabsorbed into the systemic circulation and/or secreted into the tubular fluid. The waste products are excreted in a small fraction of the filtered fluid volume, generally in less than 1%, as the “final urine.” In addition, the kidney is an endocrine organ, producing hormones acting at sites outside as well as within the kidney.

Keywords

  • Distal Convoluted Tubule
  • Luminal Membrane
  • Intercalate Cell
  • Collect Duct
  • Thick Ascend Limb

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-79565-7_1
  • Chapter length: 66 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-79565-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson DR (1987) Structure and development of the glomerular capillary wall. Am J Physiol 253:F783–F794

    PubMed  CAS  Google Scholar 

  • Alcorn D, Anderson WP, Ryan GB (1986) Morphological changes in the renal macula densa during natriuresis and diuresis. Renal Physiol 9:335–347

    PubMed  CAS  Google Scholar 

  • Alper SL, Natale J, Gluck S, Lodishand HF, Brown D (1989) Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+ATPase. Proc Natl Acad Sci USA 80:5429–5433

    CrossRef  Google Scholar 

  • Andrews PM (1988) Morphological alteration of the glomerular (visceral) epithelium in response to pathological and experimental situations. J Electron Microsc Tech 9:115–144

    PubMed  CAS  CrossRef  Google Scholar 

  • Bachmann S, Koeppen-Hagemann I, Kriz W (1985) Ultrastructural localization of Tamm-Horsfall glycoprotein (THP) in rat kidney as revealed by protein A-gold immunocytochemistry. Histochemistry 83:531–538

    PubMed  CAS  CrossRef  Google Scholar 

  • Bachmann S, Le Hir M, Eckardt KU (1993) Colocalization of erythropoietin mRNA and ecto-5′nucleotidase immunoreactivity in peritubular cells of the rat renal cortex suggests that fibroblasts produce erythropoietin. J Histochem Cytochem 41:335–341

    PubMed  CAS  CrossRef  Google Scholar 

  • Baines AD, Rouffignac C (1969) Functional heterogeneity of nephrons. II. Filtration rates, intraluminal flow velocities and fractional water reabsorption. Pflugers Arch 308:260–276

    PubMed  CAS  CrossRef  Google Scholar 

  • Bankir L, Rouffignac Cde (1985) Urinary concentrating ability: insights from comparative anatomy. Am J Physiol 249:R643–R666

    PubMed  CAS  Google Scholar 

  • Bankir L, Kaissling B, Rouffignac Cde, Kriz W (1979) The vascular organization of the kidney of Psammomys obesus. Anat Embryol 155:149–160

    PubMed  CAS  CrossRef  Google Scholar 

  • Bankir L, Bouby N, Trinh-Trang-Tan MM, Kaissling B (1987) Thick ascending limb anatomy and function: role in urine concentrating mechanism. Adv Nephrol 16:69–102

    CAS  Google Scholar 

  • Bankir L, Fischer C, Fischer S, Jukkala K, Specht H-C, Kriz W (1988) Adaptation of the rat kidney to altered water intake and urine concentration. Pflugers Arch 412:42–53

    PubMed  CAS  Google Scholar 

  • Bankir L, Bouby N, Trinh Trang Tan MM (1989) The role of the kidney in the maintenance of water balance. Baillieres Clin Endocrinol Metab 3:249–311

    PubMed  CAS  CrossRef  Google Scholar 

  • Barajas L (1971) Renin secretions: an anatomical basis for tubular control. Science 172:488–487

    CrossRef  Google Scholar 

  • Barajas L, Powers K (1990) Monoaminergic innervation of the rat kidney: a quantitative study. Am J Physiol 259:F503–F511

    PubMed  CAS  Google Scholar 

  • Barajas L, Powers K, Carretero O, Scicli AG, Inagami T (1986) Immunocytochemi- cal localization of renin and kallikrein in the rat renal cortex. Kidney Int 29:965–970

    PubMed  CAS  CrossRef  Google Scholar 

  • Barajas L, Salido EC, Laborde NP, Fisher DA (1987) Nerve growth factor immunoreactivity in mouse kidney: an immunoelectron microscopic study. J Neurosci Res 18:418–424

    PubMed  CAS  CrossRef  Google Scholar 

  • Barlet-Bas C, Khadouri S, Marsy S, Doucet A (1988) Sodium-independent in vitro induction of Na-K-ATPase by aldosterone in renal target cells: permissive effect of triiodothyronine. Proc Natl Acad Sci USA 85:1707–1711

    PubMed  CAS  CrossRef  Google Scholar 

  • Barlet-Bas C, Khadouri C, Marsy S, Doucet A (1990) Enhanced intracellular sodium concentration in kidney cell recruits: a latent pool of Na-K-ATPase whose size is modulated by corticosteroids. J Biol Chem 264:7799–7803

    Google Scholar 

  • Bell PD, Kirik K, Ribadeneira M, Barfuss D (1985) Direct visualization of the isolated and perfused macula densa. Kidney Int 27:303

    Google Scholar 

  • Bergeron M, Gaffiero P, Berthelet F, Thiery G (1988) Interrelationship between organelles in kidney cells of adult and developing rat. Pediatr Nephrol 2: 100–107

    PubMed  CAS  CrossRef  Google Scholar 

  • Biber J, Custer M, Werner A, Kaissling B, Murer H (1993) Localization of NaPi-1, a Na/Pi-cotransporter, in rabbit proximal tubules. II. Localization by immuno- histochemistry. Pflugers Arch 424:210–215

    PubMed  CAS  CrossRef  Google Scholar 

  • Blot-Chabaud M, Jaisser F, Gingold M, Bonvalet JP, Farman N (1988) Na+-K+- ATPase-dependent sodium flux in cortical collecting tubule. Am J Physiol 255:F605–F613

    PubMed  CAS  Google Scholar 

  • Blot-Chabaud M, Wanstok F, Bonvalet J-P, Farman N (1989) Cell sodium-induced recruitment of Na+-K+-ATPase pumps in rabbit cortical collecting tubules is aldosterone-dependent. J Biol Chem 265:11676–11681

    Google Scholar 

  • Borke JL, Minami J, Verma A, Penniston JT, Kumar R (1987) Monoclonal antibodies to human erythrozyte membrane Ca2+-Mg2+ adenosine triphophatase pump recognize an epitope in the basolateral membrane of human kidney distal tubule cells. J Clin Invest 80:1225–1231

    PubMed  CAS  CrossRef  Google Scholar 

  • Bouby N, Bankir L (1988) Effect of high protein intake on sodium potassium- dependent adenosine triphosphate activity in the thick ascending limb of Henle’s loop in the rat. Clin Sci 74:319–329

    PubMed  CAS  Google Scholar 

  • Bouby N, Bankir L, Trinh-Trang-Tan MM, Minuth WW, Kriz W (1985) Selective ADH-induced hypertrophy of the medullary thick ascending limb in Brattleboro rats. Kidney Int 28:456–466

    PubMed  CAS  CrossRef  Google Scholar 

  • Briggs JP, Schnermann J (1987) The tubuloglomerular feedback mechanism: functional and biochemical aspects. Annu Rev Physiol 49:251–273

    PubMed  CAS  CrossRef  Google Scholar 

  • Brown D (1989) Membrane recycling and epithelial cell function. Am J Physiol 256:F1–F12

    PubMed  CAS  Google Scholar 

  • Brown D, Orci L (1986) The “coat” of kidney intercalated cell tubulovesicles does not contain clathrin. Am J Physiol 250:605–608

    Google Scholar 

  • Brown D, Kumpulainen T, Roth J, Orci L (1983) Immunohistochemical localization of carbonic anhydrase in postnatal and adult rat kidney. Am J Physiol 245: F110–F118

    PubMed  CAS  Google Scholar 

  • Brown D, Gluck S, Hart wig J (1987) Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as a proton translocating ATPase. J Cell Biol 105:1637–1648

    PubMed  CAS  CrossRef  Google Scholar 

  • Brown D, Hirsch S, Gluck S (1988a) Localization of a proton-pumping ATPase in rat kidney. J Clin Invest 82:2114–2126

    PubMed  CAS  CrossRef  Google Scholar 

  • Brown D, Weyer P, Orci L (1988b) Vasopressin stimulates endocytosis in kidney collecting duct principal cells. J Cell Biol 46:336–341

    CAS  Google Scholar 

  • Brown D, Sabolic I, Gluck S (1991) Colchicine-induced redistribution of proton pumps in kidney epithelial cells. Kidney Int 40 [Suppl 33]:S–79-S–81

    Google Scholar 

  • Brown D, Lui B, Gluck S, Sabolic I (1992) A plasma membrane proton ATPase in specialized cells of rat epididymis. Am J Physiol 263:C913–C916

    PubMed  CAS  Google Scholar 

  • Brown NL, Madsen KM, Wingo CS, Smolka A, Tisher CC (1990) Translocation of H-K-ATPase to the apical membrane in interacted cells (IC) of rat outer medullary collecting duct (OMCD) during potassium depletion. Kidney Int 37:560 (abstract)

    Google Scholar 

  • Burckhardt G, Kinne RKH (1992) Transport proteins: cotransporters and counter-transporters. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven, New York, pp 537–586

    Google Scholar 

  • Chen M, Schnermann J, Malvin RL, Killen PD, Briggs JP (1993) Time course of stimulation of renal messenger RNA by furosemide. Hypertension 21:36–41

    PubMed  CAS  Google Scholar 

  • Cheval L, Barlet-Bas C, Khadouri C, Feraille E, Marsy S, Doucet A (1991) K+- ATPase-mediated Rb+ transport in rat collecting tubule: modulation during K+ deprivation. Am J Physiol 260:F800–F805

    PubMed  CAS  Google Scholar 

  • Christensen EI, Nielsen S (1991) Structural and functional features of protein handling in the kidney proximal tubule. Semin Nephrol 11:414–439

    PubMed  CAS  Google Scholar 

  • Christensen JA, Bohle A (1978) The juxtaglomerular apparatus in the normal rat kidney. Virchows Arch [A] 379:143–150

    CAS  CrossRef  Google Scholar 

  • Clapp WL, Madsen KM, Verlander JW, Tisher CC (1987) Intercalated cells of the rat inner medullary collecting duct. Kidney Int 31:1080–1087

    PubMed  CAS  CrossRef  Google Scholar 

  • Coutry N, Blot Chabaud M, Mateo P, Bonvalet JP, Farman N (1992) Time course of sodium-induced Na(+)-K(+)-ATPase recruitment in rabbit cortical collecting tubule. Am J Physiol 263:C61–C68

    PubMed  CAS  Google Scholar 

  • Curran KA, Hebert MJ, Cain BD, Wingo CS (1992) Evidence for the presence of a K-dependent acidifying adenosine triphosphatase in the rabbit renal medulla. Kidney Int 42:1093–1098

    PubMed  CAS  CrossRef  Google Scholar 

  • Davis G, Johns EJ (1990) The effect of angiotensin II and vasopressin on renal haemodynamics. J Med Eng Technol 14:197–200

    PubMed  CAS  CrossRef  Google Scholar 

  • Davis RG, Madsen KM, Fregly MJ, Tisher CC (1983) Kidney structure in hypo- thyreoidism. Am J Pathol 113:41–49

    PubMed  CAS  Google Scholar 

  • Dietl P, Kizer N, Stanton BA (1992) Conductive properities of a rabbit cortical collecting duct cell line: regulation by isoproterenol. Am J Physiol 262: F578–F582

    PubMed  CAS  Google Scholar 

  • Dobyan DC, Bulger RE (1982) Renal carbonic anhydrase. Am J Physiol 243:F311–F324

    PubMed  CAS  Google Scholar 

  • Dobyan DC, Magill LS, Friedman PA, Hebert SC, Bulger RE (1982) Carbonic anhydrase histochemistry in rabbit and mouse kidneys. Anat Rec 204:185–197

    PubMed  CAS  CrossRef  Google Scholar 

  • Dørup J (1985a) Ultrastructure of distal nephron cells in rat renal cortex. J Ultrastruct Res 92:101–118

    PubMed  CrossRef  Google Scholar 

  • Dørup J (1985b) Structural adaptation of intercalated cells in rat renal cortex to acute metabolic acidosis and alkalosis. J Ultrastruct Res 92:119–131

    PubMed  CrossRef  Google Scholar 

  • Dørup J (1988) Ultrastructure of three dimensionally localized distal nephron segments in superficial cortex of rat kidney. J Ultrastruct Mol Struct Res 99: 169–187

    PubMed  CrossRef  Google Scholar 

  • Dørup J, Morsing P, Rasch R (1992) Tubule-tubule and tubule-arteriole contacts in rat kidney distal nephrons. Lab Invest 67:761–769

    PubMed  Google Scholar 

  • Doucet A, Marsy S (1987) Characterization of K-ATPase activity in distal nephron: stimulation by potassium depletion. Am J Physiol 253:F418–F423

    PubMed  CAS  Google Scholar 

  • Drenckhahn D, Schlüter K, Allen DP, Bennett V (1985) Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science 230:1287–1289

    PubMed  CAS  CrossRef  Google Scholar 

  • Drenckhahn D, Schnittler H, Nobiling R, Kriz W (1990) Ultrastructural organization of contractile proteins in rat glomerular mesangial cells. Am J Pathol 137: 1343–1351

    PubMed  CAS  Google Scholar 

  • Dworkin LD, Brenner BM (1992) Biophysical basis of glomerular filtration. In: Seldin D, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven, New York, pp 977–1016

    Google Scholar 

  • Edelman IS (1975) Mechanism of action of steroid hormones. J Steroid Biochem 6:147–159

    PubMed  CAS  CrossRef  Google Scholar 

  • Elger M, Sakai T, Kriz W (1990) Role of mesangial cell contraction in adaptation of the glomerular tuft to changes in extracellular volume. Pflugers Arch 415: 598–605

    PubMed  CAS  CrossRef  Google Scholar 

  • Elger M, Bankir L, Kriz W (1992) Morphometric analysis of kidney hypertrophy in rats after chronic potassium depletion. Am J Physiol 262:F656–F667

    PubMed  CAS  Google Scholar 

  • Elger M, Mundel P, Kriz W (1993) The contractile apparatus of podocytes is arranged to counteract glomerular pressure. Nieren Hochdruckkrankh 22: 474

    Google Scholar 

  • Ellison DH, Velasquez H, Wright F (1987) Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Physiol 253:F546–F554

    PubMed  CAS  Google Scholar 

  • Ellison DH, Velazquez H, Wright FS (1989) Adaptation of the distal convoluted tubule of the rat. Structural and functional effects of dietary salt intake and chronic diuretic infusion. J Clin Invest 83:113–126

    PubMed  CAS  CrossRef  Google Scholar 

  • Ellison DH, Biemesderfer D, Morrisey J, Lauring J, Desir GV (1993) immunocytochemical characterization of the high-affinity thiazide diuretic receptor in rabbit renal cortex. Am J Physiol 264:F141–F148

    PubMed  CAS  Google Scholar 

  • Emmons CL, Matsuzaki K, Stokes UB, Schuster VL (1991) Axial heterogeneity of rabbit cortical collecting duct. Am J Physiol 260:F498–F505

    PubMed  CAS  Google Scholar 

  • Ernst SA (1975) Transport ATPase cytochemistry: ultrastructural localization of potassium-dependent and potassium-independent phosphatase activities in rat kidney cortex. J Cell Biol 66:586–608

    PubMed  CAS  CrossRef  Google Scholar 

  • Evan A, Huser J, Bengele HH, Alexander EA (1980) The effect of alterations in dietary potassium on collecting system morphology in the rat. Lab Invest 42: 668–675

    PubMed  CAS  Google Scholar 

  • Fanestil DD (1988) Mechanism of action of aldosterone blockers. Semin Nephrol 8:249–263

    PubMed  CAS  Google Scholar 

  • Farman N, Oblin ME, Lombes M, Delahaye F, Westphal HM, Bonvalet JP, Gasc JM (1991) Immunolocalization of gluco- and mineralocorticoid receptors in rabbit kidney. Am J Physiol 260:C226–C233

    PubMed  CAS  Google Scholar 

  • Field M, Giebisch G (1985) Hormonal control of renal potassium excretion. Kidney Int 27:379–387

    PubMed  CAS  CrossRef  Google Scholar 

  • Figueroa CD, Lewis HM, Maclver AG, Mackenzie JC, Bhoola KD (1990) Cellular localisation of atrial natriuretic factor in the human kidney. Nephrol Dial Transplant 5:25–31

    PubMed  CAS  Google Scholar 

  • Fine LG, Badie Dezfooly B, Lowe AG, Hamzeh A, Wells J, Salehmoghaddam S (1985) Stimulation of Na+/H+ antiport is an early event in hypertrophy of renal proximal tubular cells. Proc Natl Acad Sci USA 82:1736–1740

    PubMed  CAS  CrossRef  Google Scholar 

  • Fourman J, Moffat DB (1971) The blood vessels of the kidney. Blackwell Scientific, Oxford

    Google Scholar 

  • Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical water channel of rat kidney collecting tubule. Nature 361: 549–552

    PubMed  CAS  CrossRef  Google Scholar 

  • Ganote CE, Grantham JJ, Moses HL (1968) Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit. J Cell Biol 36:355–367

    PubMed  CAS  CrossRef  Google Scholar 

  • Gesek FA, Friedman PA (1993) Calcitonin stimulates calcium transport in distal convoluted tubule cells. Am J Physiol 264:F744–F751

    PubMed  CAS  Google Scholar 

  • Gluck S (1992) The osteoclast as a unicellular proton-transporting epithelium. Am J Med Sci 303:134–139

    PubMed  CAS  CrossRef  Google Scholar 

  • Gluck S, Cannon C, Al-Awqati Q (1982) Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci USA 79:4327–4331

    PubMed  CAS  CrossRef  Google Scholar 

  • Gorgas K (1978) Structure and innervation of the juxtaglomerular apparatus of the rat. Adv Anat Embryol Cell Biol 54:5–84

    Google Scholar 

  • Guder WG, Wagner S, Wirthensohn G (1986) Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction. Kidney Int 29:41–45

    PubMed  CAS  CrossRef  Google Scholar 

  • Guder WG, Hallbach J, Fink E, Kaissling B, Wirthensohn G (1987) Kallikrein (kiniogenese) in the mouse nephron: effect of dietary potassium. Biol Chem Hoppe Seyler 368:637–645

    PubMed  CAS  CrossRef  Google Scholar 

  • Hammermann MR, O’Miller SB (1993) Role of growth factors in regulation for renal growth. Annu Rev Physiol 55:305–321

    CrossRef  Google Scholar 

  • Hansen GP, Tisher CC, Robinson RR (1980) Response of the collecting duct to disturbances of acid-base and potassium balance. Kidney Int 17:326–337

    PubMed  CAS  CrossRef  Google Scholar 

  • Hasegawa H, Zhang R, Dohrman A, Verkman AS (1993) Tissue-specific expression of mRNA encoding rat kidney water channel CHIP28k by in situ hybridization. Am J Physiol 264:C237–C245

    PubMed  CAS  Google Scholar 

  • Hayashi M, Schuster VL, Stokes JB (1988) Absence of transepithelial anion exchange by rabbit OMCD: evidence against reversal of cell polarity. Am J Physiol 225:F220–F228

    Google Scholar 

  • Healy DP, Fanestil DD (1986) Localization of atrial natriuretic peptide binding sites within the rat kidney. Am J Physiol 250:F573–F578

    PubMed  CAS  Google Scholar 

  • Holmer S, Rinne B, Eckardt KU, Le Hir M, Kaissling B, Riegger G, Kurtz A (1994) Role of renal nerves for the expression of renin in the rat kidney. Am J Physiol 266:F738–F745

    PubMed  CAS  Google Scholar 

  • Holthofer H, Schulte BA, Pasternack G, Siegel GJ, Spicer SS (1987) Immunocytochemical characterization of carbonic anhydrase-rich cells in the rat kidney collecting duct. Lab Invest 57:150–156

    PubMed  CAS  Google Scholar 

  • Hoyer JR, Sisson SP, Vernier RL (1979) Tamm-Horsfall glycoprotein ultrastructural immunoperoxidase localization in rat kidney. Lab Invest 41:168–173

    PubMed  CAS  Google Scholar 

  • Imbert-Teboul M, Chabardes D, Morel F (1980) Vasopressin and catecholamine sites of action along rabbit, mouse and rat nephron. In: Bahlman, J, Brod J (eds) Disturbance of water and electrolyte metabolism. Karger, Basel, pp 41–47 (Contributions to nephrology, vol 21)

    Google Scholar 

  • Inke G (1987) The protolobar structure of the human kidney. Liss, New York

    Google Scholar 

  • Jamison RL, Kriz W (1982) Urinary concentrating mechanism. Structure and function. Oxford University Press, Oxford

    Google Scholar 

  • Jones DB (1985) Scanning electron microscopy of basolateral surfaces or rat renal tubules isolated by sequential digestion. Anat Rec 213:121–130

    PubMed  CAS  CrossRef  Google Scholar 

  • Jørgensen F, Bentzon MW (1968) The ultrastructure of the normal human glomerulus. Thickness of glomerular basement membrane. Lab Invest 18:42–48

    PubMed  Google Scholar 

  • Jørgensen PL (1986) Structure, function and regulation of Na, K-ATPase in the kidney. Kidney Int 29:10–20

    PubMed  CrossRef  Google Scholar 

  • Kachadorian WA, Levine SD, Wade JB, DiScala VA, Hays M (1977) Relationship of aggregated intramembraneous particles to water permeability in vasopressin- treated toad urinary bladder. J Clin Invest 59:576–581

    PubMed  CAS  CrossRef  Google Scholar 

  • Kaissling B (1980) Ultrastructural organization of the transition from the distal nephron to the collecting duct in the desert rodent Psammomys obesus. Cell Tissue Res 212:475–495

    PubMed  CAS  CrossRef  Google Scholar 

  • Kaissling B (1982) Structural aspects of adaptive changes in renal electrolyte excretion. Am J Physiol 243:F211–F226

    PubMed  CAS  Google Scholar 

  • Kaissling B (1985) Cellular heterogeneity of the distal nephron and its relation to function. Klin Wochenschr 63:868–876

    PubMed  CAS  CrossRef  Google Scholar 

  • Kaissling B, Kriz W (1979) Structural analysis of rabbit kidney. Adv Anat Embryol Cell Biol 56:1–123

    PubMed  CAS  CrossRef  Google Scholar 

  • Kaissling B, Kriz W (1982) Variability of intercellular spaces between macula densa cells: a transmission electron microscopic study in rabbits and rats. Kidney Int 12:S9–S17

    CAS  Google Scholar 

  • Kaissling B, Kriz W (1992) Morphology of the loop of Henle distal tubule, and collecting duct. In: Windhager EE (ed) Handbook of physiology. OUP USA (American Physiological Society), New York, pp 109–167

    Google Scholar 

  • Kaissling B, Le Hir M (1982) Distal tubular segments of the rabbit kidney after adaptation of altered Na- and K-intake. I. Structural changes. Cell Tissu Res 224:469–492

    CAS  Google Scholar 

  • Kaissling B, Le Hir M (1985) Anpassung distaler Tubulussegmente an Änderung im Elektrolythaushalt. Acta Histochem Suppl 26: 185–191

    Google Scholar 

  • Kaissling B, Le Hir M (1991) Aldosterone: influence on distal tubule cell structure. In: Bonvalet JP, Farman N, Lombès M, Rafestin-Oblin ME (eds) Aldosterone: fundamental aspects. Colloque INSERM, Paris, pp 175–185

    Google Scholar 

  • Kaissling B, Le Hir M (1994) Characterization and distribution of interstitial cell types in the renal cortex of rat. Kidney Int 45:709–720

    PubMed  CAS  CrossRef  Google Scholar 

  • Kaissling B, Stanton B (1988a) Adaptation of distal tubule and collecting duct to increased sodium delivery. I. Ultrastructure. Am J Physiol 255:F1256–F1268

    CAS  Google Scholar 

  • Kaissling B, Stanton B (1988b) Chronic furosemide treatment alters the ultrastructure of intercalated cells in renal collecting ducts. Clin Res 36:521A

    Google Scholar 

  • Kaissling B, Stanton BA (1992) Structure-function correlation in electrolyte transporting epithelia. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven, New York, pp 779–801

    Google Scholar 

  • Kaissling B, Rouffignacs Cde, Barrett JM, Kriz W (1975) The structural organization of the kidney of the desert roden Psammomy obesus. Anat Embryol 148: 121–143

    PubMed  CAS  CrossRef  Google Scholar 

  • Kaissling B, Peter S, Kriz W (1977) The transition of the thick ascending limb of Henle’s loop into the distal convoluted tubule in the nephron of the rat kidney. Cell Tissue Res 182:111–118

    PubMed  CAS  CrossRef  Google Scholar 

  • Kaissling B, Koeppen BM, Le Hir M, Wade JB (1981) Effect of mineralocorticoids on the structure of intercalated cells in renal cortical collecting ducts. Acta Anat 111:72

    Google Scholar 

  • Kaissling B, Bachmann S, Kriz W (1985) Structural adaptation of the distal convoluted tubule to prolonged furosemide treatment. Am J Physiol 248: F374–F381

    PubMed  CAS  Google Scholar 

  • Kaissling B, Spiess S, Rinne B, Le Hir M (1993) Effects of anemia on the morphology of the renal cortex of rats. Am J Physiol 264:F608–F617

    PubMed  CAS  Google Scholar 

  • Kanwar YS, Jakubowski ML, Rosenzweig LJ, Gibbons JT (1984a) De novo cellular synthesis of sulfated proteoglycans of the developing renal glomerulus in vivo. Proc Natl Acad Sci USA 81:7108–7111

    PubMed  CAS  CrossRef  Google Scholar 

  • Kanwar YS, Veis A, Kimura JH, Jakubowski ML (1984b) Characterization of heparan sulfate-proteoglycan of glomerular basement membranes. Proc Natl Acad Sci USA 81:762–766

    PubMed  CAS  CrossRef  Google Scholar 

  • Karnovsky M (1979) The structural bases for glomerular filtration. In: Churg J et al. (eds) The kidney disease. Present status. Williams and Williams, Baltimore (IAP monograph 20

    Google Scholar 

  • Kashgarian M, Biemesderfer D, Caplan M, Forbush B (1985) Monoclonal antibody to Na,K-ATPase: immunocytochemical localization along nephron segments. Kidney Int 28:899–913

    PubMed  CAS  CrossRef  Google Scholar 

  • Kashgarian M, Ardito T, Hirsch DT, Hayslett JP (1987) Response of collecting tubule cells to aldosterone and potassium loading. Am J Physiol 253:F8–F14

    PubMed  CAS  Google Scholar 

  • Kenouch S, Coutry N, Farman N, Bonvalet J-P (1992) Multiple patterns of 11b- hydroxysteroid dehydrogenase catalytic activity along the mammalian nephron. Kidney Int 42:56–60

    PubMed  CAS  CrossRef  Google Scholar 

  • Kerjaschki D, Sharkey DJ, Farquhar MG (1984) Identification and characterization of podocalyxi - the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol 98:1591–1596

    PubMed  CAS  CrossRef  Google Scholar 

  • Khadouri C, Bas-Barlet C, Doucet A (1987) Mechanism of increased tubular Na- K-ATPase during streptozotocin induced diabetes. Pflugers Arch 409:296–301

    PubMed  CAS  Google Scholar 

  • Kim J, Tisher CC, Linser PJ, Madsen KM (1990) Ultrastructural localization of carbonic anhydrase II in subpopulations of intercalated cells of the rat kidney. J Am Soc Nephrol 1:245–256

    PubMed  CAS  Google Scholar 

  • Kim J, Welch WJ, Cannon JK, Tisher CC, Madsen KM (1992) Immunocytochemical response of type A and type B intercalated cells to increased sodium chloride delivery. Am J Physiol 262:F288–F302

    PubMed  CAS  Google Scholar 

  • Kirk KL, Bell PD, Barfuss DW, Ribadeneira M (1985) Direct visualization of the isolated and perfused macula densa. Am J Physiol 248:F890–F894

    PubMed  CAS  Google Scholar 

  • Knepper MA, Sands JM, Nonoguchi H, Star RA, Packer RK (1988) Inner medullary collecting duct. In: Davidson AM (ed) Nephrology. Proceedings of the Xth international congress of nephrology, vol I. Bailliere Tindall, London, pp 317–331

    Google Scholar 

  • Koechlin N, Elalouf JM, Kaissling B, Roinel N, Rouffignac CDE (1989) A structural study of the rat proximal and distal nephron: effect of peptide and thyroid hormones. Am J Physiol 256:F814–F822

    CAS  Google Scholar 

  • Koeppen BM (1988) Electrophysiology of the outer medullary collecting duct. In: Davidson AM (ed) Nephrology. Proceedings of the Xth international congress of nephrology, vol I. Bailliere Tindall, London, pp 304–316

    Google Scholar 

  • Koob R, Zimmerman M, Schoner W, Drenckhahn D (1988) Colocalization and coprecipitation of ankyrin and Na+,K+-ATPase in kidney epithelial cells. Eur J Cell Biol 45:230–237

    PubMed  CAS  Google Scholar 

  • Kopito RR (1990) Molecular biology of the anion exchanger gene family. Int Rev Cytol 123:177–199

    PubMed  CAS  CrossRef  Google Scholar 

  • Koseki C, Hayashi Y, Torikai S, Furuya M, Ohnuma N, Imai M (1986) Localization of binding sites for rat atrial natriuretic polypeptide in rat kidney. Am J Physiol 250:F210–F216

    PubMed  CAS  Google Scholar 

  • Kriz W (1981) Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol 24LR3–R16

    Google Scholar 

  • Kriz W (1983) Structural organization of the renal medullary counterflow system. Fed Proc 42:2379–2385

    PubMed  CAS  Google Scholar 

  • Kriz W (1987) A periarterial pathway for intrarenal distribution of renin. Kidney Int Suppl 20:51–56

    Google Scholar 

  • Kriz W, Bankir L (1988) A standard nomenclature for structures of the kidney. Kidney Int 32:1–7

    Google Scholar 

  • Kriz W, Kaissling B (1992) Structural organization of the mammalian kidney. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology. Raven, New York, pp 707–777

    Google Scholar 

  • Kriz W, Napiwotzky P (1979) Structural and functional aspects of the renal in- terstitium. Contr Nephrol 16:104–108

    CAS  Google Scholar 

  • Kriz W, Barrett JM, Peter S (1976) The renal vasculature: anatomical-functional aspects. Int Rev Physiol 11:1–21

    PubMed  CAS  Google Scholar 

  • Kriz W, Elger M, Lemley KV, Sakai T (1990) Mesangial cell-glomerular basement membrane connections counteract glomerular capillary and mesangium expansion. Am J Nephrol 10:4–13

    PubMed  CrossRef  Google Scholar 

  • Kumar AM, Gupta RK, Spitzer A (1988) Intracellular sodium in proximal tubules of diabetic rats. Role of glucose. Kidney Int 33:792–797

    PubMed  CAS  CrossRef  Google Scholar 

  • Kurihara H, Anderson JM, Farquhar MG (1992) Diversity among tight junctions in rat kidney: glomerular slit diaphragms and endothelial junctions express only one isoform of the tight junction protein ZO-1. Proc Natl Acad Sci USA 89:7075–7079

    PubMed  CAS  CrossRef  Google Scholar 

  • Kurtz A (1989) Cellular control of renin secretion. Rev Physiol Biochem Pharmacol 113:2–40

    Google Scholar 

  • Larsson L, Maunsbach AB (1980) The ultrastructural development of the glomerular filtration barrier in the rat kidney: a morphometric analysis. J Ultrastruct Res 72:392–406

    PubMed  CAS  CrossRef  Google Scholar 

  • Le Hir M, Kaissling B (1989) Distribution of 5′-nucleotidase in the renal interstitium of the rat. Cell Tissue Res 258:177–182

    PubMed  CrossRef  Google Scholar 

  • Le Hir M, Kaissling B (1993) Distribution and regulation of ecto-5′idase in the kidney. Implications for the physiological function of adenosine. Am J Physiol 264:F377–F387

    PubMed  Google Scholar 

  • Le Hir M, Kaissling B, Dubach UC (1982) Distal tubular segments in the rabbit kidney after adaptation to altered Na- and K-intake. II. Changes in Na-K-ATPase. Cell Tissue Res 224:493–503

    PubMed  CrossRef  Google Scholar 

  • Lemley KV, Kriz W (1991) Anatomy of the renal interstitium. Kidney Int 39: 370–382

    PubMed  CAS  CrossRef  Google Scholar 

  • Levi M, Lötscher M, Sorribas V, Custer M, Arar M, Kaissling B, Murer H, Biber B (1994) Cellular mechanisms of acute and chronic adaptation of rat renal phosphate transporter to alterations in dietary Pi. Am J Physiol 267:F900–F908

    PubMed  CAS  Google Scholar 

  • Levine DZ, Jacobson HR (1986) The regulation of renal acid secretion: new observations from studies of distal nephron segments. Kidney Int 29:1099–1109

    PubMed  CAS  CrossRef  Google Scholar 

  • Loffing J, Le Hir M, Kaissling B (1995) Modulation of salt transport rate affects DNA-synthesis in vivo in rat renal tubules. Kidney Int (in press)

    Google Scholar 

  • Lombès M (1990) Immunohistochemical localization of renal mineralocorticoid receptor by using an anti-idiotypic antibody that is an internal image of aldosterone. Proc Natl Acad Sci USA 87:1086–1088

    PubMed  CrossRef  Google Scholar 

  • Lombès M, Farman N, Oblin ME, Baulieu EE, Bonvalet JP, Erlanger BF, Gasc JM (1990) Immunohistochemical localization of renal mineralocorticoid receptor by using an anti-idiotypic antibody that is an internal image of aldosterone. Proc Natl Acad Sci USA 87:1086–1088

    PubMed  CrossRef  Google Scholar 

  • Lönnerholm G, Wistrand PJ (1984) Carbonic anhydrase in the human kidney: a histochemical and immunocytochemical study. Kidney Int 25:886–898

    PubMed  CrossRef  Google Scholar 

  • Mackovic-Basic M, Fine LG, Norman JT, Cragoe EJ, Kurtz I (1992) Stimulation of Na+/H+ exchange is not required for induction of hypertrophy of renal cells in vitro. J Am Soc Nephrol 3:1124–1130

    PubMed  CAS  Google Scholar 

  • Madsen KM, Tisher CC (1983) Cellular response to acute respiratory acidosis in rat medullary collecting duct. Am J Physiol 14:F670–F679

    Google Scholar 

  • Madsen KM, Tisher CC (1984) Response of intercalated cells of rat outer medullary collecting duct to chronic metabolic acidosis. Lab Invest 51:268–276

    PubMed  CAS  Google Scholar 

  • Madsen KM, Tisher CC (1986) Structural-functional relationships along the distal nephron. Am J Physiol 250:F1–F15

    CAS  Google Scholar 

  • Madsen KM, Kim J, Tisher CC (1992) Intracellular band 3 immunostaining in type A intercalated cells of rabbit kidney. Am J Physiol 262:F1015–F1022

    PubMed  CAS  Google Scholar 

  • Matlin KS, Caplan MJ (1992) Epithelial cell structure and polarity. In: Giebisch G, Seldin D (eds) The kidney: physiology and pathophysiology. Raven, New York, pp 447–473

    Google Scholar 

  • Maunsbach AB, Christensen IE (1992) Functional ultrastructure of the proximal tubule. In: Windhager EE (ed) Handbook of physiology: renal physiology. Section 8. Oxford University Press, New York, pp 41–107

    Google Scholar 

  • Maxwell PH, Osmond MK, Pugh ChW, Heryet A, Nicholls LG, Tan CC, Doe BG, Ferguson DKP, Johnson MH, Ratcliffe PJ (1993) Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44:1149–1162

    PubMed  CAS  CrossRef  Google Scholar 

  • Messina A, Alcorn D, Ryan GB (1987) Intercellular spaces between macula densa cells: an ultrastructural study comparing high pressure perfusion fixation with in situ drip-fixation of rat kidney. Cell Tissue Res 250:461–464

    PubMed  CAS  CrossRef  Google Scholar 

  • Modena B, Holmer S, Eckardt K-U, Schricker K, Riegger G, Kaissling B, Kurtz A (1993) Furosemide stimulates renin expression in the kidneys of salt-supplemented rats. Pflugers Arch 424:403–409

    PubMed  CAS  CrossRef  Google Scholar 

  • Morel F, Doucet A (1986) Hormonal control of kidney functions at the cell level. Physiol Rev 66:377–468

    PubMed  CAS  Google Scholar 

  • Morel F, Doucet A (1992) Functional segmentation of the nephron. In: Giebisch G, Seldin DW (eds) The kidney: physiology and pathophysiology. Raven, New York, pp 1049–1086

    Google Scholar 

  • Morel F, Imbert-Teboul M, Chabardes M, Montegut M, Clique A (1978) Impaired response to vasopressin of adenylate cyclase of the thick ascending limb of Henle loop in Brattleboro rats with diabetes insipidus. Renal Physiol 1:3–10

    Google Scholar 

  • Moriyama Y, Nelson N (1989) H+-translocating ATPase in Golgi apparatus. Characterization as vacuolar H+-ATPase and its subunit structures. J Biol Chem 264:18445–18450

    PubMed  CAS  Google Scholar 

  • Mundel P, Bachmann S, Bader M, Fischer A, Kummer W, Mayer B, Kriz W (1992) Expression of nitric oxide synthase in kidney macula densa cells. Kidney Int 42:1017–1019

    PubMed  CAS  CrossRef  Google Scholar 

  • Naray-Fejes-Toth A, Rusvai E, Fejes-Toth G (1992) Distribution of miner- alocorticoid receptors (mr) and 11-hydroxysteroid dehydrogenase (11-hsd) in principal and intercalated cells. Proceedings of the 25th annual meeting of the American Society of Nephrology, vol 515 (abstract)

    Google Scholar 

  • Nelson N (1992) Structural conservation and functional diversity of V-ATPases. J Bioenerg Biomembr 24:407–414

    PubMed  CAS  CrossRef  Google Scholar 

  • Nelson RD, Guo XL, Masood K, Brown D, Kalkbrenner M, Gluck S (1992) Selectively amplified expression of an isoform of the vacuolar H+-ATPase 56-kilodalton subunit in renal intercalated cells. Proc Natl Acad Sci USA 89: 3541–3545

    PubMed  CAS  CrossRef  Google Scholar 

  • Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993a) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA 90:11663–11667

    PubMed  CAS  CrossRef  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Knepperm MA, Agre P (1993b) CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol 120:371–383

    PubMed  CAS  CrossRef  Google Scholar 

  • Oliver J, MacDowell M, Welt LG, Holliday MA, Hollander W, Winters RW, Williams TF, Segar WE (1957) The renal lesions of electrolyte imbalance. I. The structural alterations in potassium-depleted rats. J Exp Med 106:563–574

    PubMed  CAS  CrossRef  Google Scholar 

  • Peter K (1927) Untersuchungen über Bau und Entwicklung der Niere. Fischer, Jena, pp 1909

    Google Scholar 

  • Pfaller W (1982) Structure function correlation in rat kidney. Quantitative correlation of structure and function in the normal and injured rat kidney. Adv Anat Embryol Cell Biol 70:1–106

    PubMed  CAS  CrossRef  Google Scholar 

  • Rasch R (1984) Changes in macula densa of the juxtaglomerular apparatus in experimental diabetes. Diabetalogia 27:323A–324A

    CrossRef  Google Scholar 

  • Raymond JR, Kim J, Beach RE, Tisher CC (1993) Immunohistochemical mapping of cellular and subcellular distribution of 5-HT1A receptors in rat and human kidneys. Am J Physiol 264.F9–F19

    PubMed  CAS  Google Scholar 

  • Reinecke M, Forssmann WG (1988) Neuropeptide (neuropeptide Y, neurotensin, vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, somatostatin) immunohistochemistry and ultrastructure of renal nerves. Histochemistry 89:1–9

    PubMed  CAS  CrossRef  Google Scholar 

  • Ridderstrale Y, Kashgarian M, Koeppen BM, Giebisch G, Stetson DL, Ardito T, Stanton BA (1988) Morphological heterogeneity of the rabbit collecting duct. Kidney Int 34:655–670

    PubMed  CAS  CrossRef  Google Scholar 

  • Rodewald R, Karnovsky MJ (1974) Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol 60:423–433

    PubMed  CAS  CrossRef  Google Scholar 

  • Roth J, Brown D, Norman AW, Orci L (1982) Localization of the vitamin D- dependent calcium-binding protein in the mammalian kidney. Am J Physiol 243:F243–F252

    PubMed  CAS  Google Scholar 

  • Rundle SE, Smith AI, Stockman D, Funder JW (1989) Immunocytochemical demonstration of mineralocorticoid receptors in rat and human kidney. J Steroid Biochem 33:1235–1242

    PubMed  CAS  CrossRef  Google Scholar 

  • Sabolic I, Valenti G, Verbavatz JM, Van Hoek AN, Verkman AS, Ausiello AD, Brown D (1992) Localization of the CHIP28 water channel in rat kidney. Am J Physiol 263:C1225–C1233

    PubMed  CAS  Google Scholar 

  • Salehmoghaddam S, Bradley T, Mikhail N, Badie Dezfooly B, Nord EP, Trizna W, Kheyfets R, Fine LG (1985) Hypertrophy of basolateral Na-K pump activity in the proximal tubule of the remnant kidney. Lab Invest 53:443–452

    PubMed  CAS  Google Scholar 

  • Salido EC, Barajas L, Lechago J, Laborde NP, Fisher DA (1986) Immunocytochemical localization of nerve growth factor in mouse kidney. J Histochem Cytochem 34:1155–1160

    PubMed  CAS  CrossRef  Google Scholar 

  • Salido EC, Lakshmanan J, Fisher DA, Shapiro LJ, Barajas L (1991) Expression of epidermal growth factor in the rat kidney. An immunocytochemical and in situ hybridization study. Histochemistry 96:65–72

    PubMed  CAS  CrossRef  Google Scholar 

  • Sands JM, Kokko JP, Lacobson HR (1992) Intrarenal heterogeneity: vascular and tubular. In: Giebisch G, Seldin DW (eds) The kidney: physiology and pathophysiology. Raven, New York, pp 1087–1155

    Google Scholar 

  • Satlin LM, Schwartz GJ (1989) Cellular remodeling of HCO J secreting cells in rabbit renal collecting duct in response to an acidic environment. J Cell Biol 109:1279–1289

    PubMed  CAS  CrossRef  Google Scholar 

  • Scherzer P, Wald H, Popovitzer MM (1987) Enhanced glomerular filtration and Na+-K+-ATPase with furosemide administration. Am J Physiol 252:F910–F915

    PubMed  CAS  Google Scholar 

  • Schlatter E, Salomonsson M, Pesson AEG, Greger R (1989) Macula densa cells sense luminal NaCl concentration via the furosemide sensitive NaCl-K cation- sporter. Pflugers Arch 414:266–290

    CrossRef  Google Scholar 

  • Schnermann J, Briggs JP (1992) Function of the juxtaglomerular apparatus: control of glomerular hemodynamics and renin secretion. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Ravan, New York, pp 1249–1290

    Google Scholar 

  • Schurek HJ, Jost U, Baumgartl H, Bertram H, Heckmann U (1990) Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am J Physiol 259: F910–F915

    PubMed  CAS  Google Scholar 

  • Schuster VL (1993) Function and regulation of collecting duct intercalated cells. Annu Rev Physiol 55:267–288

    PubMed  CAS  CrossRef  Google Scholar 

  • Schuster VL, Bonsib SM, Jennings ML (1986) Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and band 3 cytochemistry. Am J Physiol 25LC347–C355

    Google Scholar 

  • Schwartz GJ, Barasch J, Al-Awqati Q (1985) Plasticity of functional epithelial polarity. Nature 318:368–371

    PubMed  CAS  CrossRef  Google Scholar 

  • Seki G, Frömter E (1992) Acetazolamide inhibition of basolateral Cl–/CO 3xchange in rabbit renal proximal S3 segment. Pflugers Arch 422:55–59

    PubMed  CAS  CrossRef  Google Scholar 

  • Silver RB, Frindt G (1993) Functional identification of H-K-ATPase in intercalated cells of cortical collecting tubule. Am J Physiol 264:F259–F266

    PubMed  CAS  Google Scholar 

  • Simon K, Cao Y, Franki N, Hays R (1993) Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Physiol 265:C757–C762

    PubMed  CAS  Google Scholar 

  • Smith HW (1951) The kidney. Structure and function in health and disease. Oxford University Press, New York

    Google Scholar 

  • Spanidis A, Wunsch H, Kaissling B, Kriz W (1982) Three-dimensional shape of a Goormaghtigh cell and its contact with a granular cell in the rabbit kidney. Anat Embryol 165:239–252

    CAS  Google Scholar 

  • Spielman WS, Arend LJ (1991) Adenosine receptors and signalling in the kidney. Hypertension 17:117–130

    PubMed  CAS  Google Scholar 

  • Stanton B, Kaissling B (1988) Adaptation of distal tubule and collecting duct to increased sodium delivery. II. Na+ and K+ transport. Am J Physiol 255: F1269–F1275

    CAS  Google Scholar 

  • Stanton B, Kaissling B (1989) Regulation of renal ion transport and cell growth by sodium. Am J Physiol 257:F1–F10

    PubMed  CAS  Google Scholar 

  • Stanton B, Biemesderfer D, Wade JB, Giebisch G (1981) Structural and functional study of the rat distal nephron: effects of potassium adaptation and depletion. Kidney Int 19:36–48

    PubMed  CAS  CrossRef  Google Scholar 

  • Stanton B, Giebisch G, Klein-Robbenhaar G, Wade JB, De Fronzo RA (1985a) Effects of adrenalectomy and chronic adrenal corticosteroid replacement on potassium transport in rat kidney. J Clin Invest 75:1317–1326

    PubMed  CAS  CrossRef  Google Scholar 

  • Stanton B, Janzen A, Klein-Robbenhaar G, De Fronzo RA, Giebisch G, Wade JB (1985b) Ultrastructure of rat initial collecting tubule. Effect of adrenal corticosteroid treatment. J Clin Invest 75:1327–1334

    PubMed  CAS  CrossRef  Google Scholar 

  • Stanton B, Pan L, Deetjen H, Guckian V, Giebisch G (1987) Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. J Clin Invest 79:198–206

    PubMed  CAS  CrossRef  Google Scholar 

  • Stanton BA (1989) Renal potassium transport: morphological and functional adaptations. Am J Physiol 257:R989–R997

    PubMed  CAS  Google Scholar 

  • Stetson DL, Wade JB, Giebisch G (1980) Morphologic alterations in the rat medullary collecting duct following potassium depletion. Kidney Int 17:45–56

    PubMed  CAS  CrossRef  Google Scholar 

  • Stone DK, Crider BP, Xie XS (1990) Aldosterone and urinary acidification. Semin Nephrol 10:375–379

    PubMed  CAS  Google Scholar 

  • Takahashi-Iwanaga H (1991) The three-dimensional cytoarchitecture of the interstitial tissue in the rat kidney. Cell Tissue Res 264(2):269

    PubMed  CAS  CrossRef  Google Scholar 

  • Taugner R, Schiller A, Kaissling B, Kriz W (1978) Gap junctional coupling between JGA and the glomerular tuft. Cell Tissue Res 186:279–285

    PubMed  CAS  CrossRef  Google Scholar 

  • Tisher CC, Madsen KM (1987) Anatomy of the kidney. In: Brenner BM, Rector FC (eds) The kidney, 3rd edn. vol 1. Saundes, Philadelphia, pp 3–60

    Google Scholar 

  • Toback FG, Ordonez NG, Bortz SL, Spargo BH (1976) Zonal changes in renal structure and phospholipid metabolism in potassium-deficient rats. Lab Invest 34:115–124

    PubMed  CAS  Google Scholar 

  • Toback FG, Kartha S, Walsh-Reitz MM (1993) Regeneration of kidney tubular epithelial cells. Clin Invest 71:871–873

    CrossRef  Google Scholar 

  • Trinh Trang Tan MM, Diaz M, Grunfeld JP, Bankir L (1981) ADH-dependent nephron heterogeneity in rats with hereditary hypothalamic diabetes insipidus. Am J Physiol 240:F372–F380

    PubMed  CAS  Google Scholar 

  • Trinh Trang Tan MM, Bouby N, Doute M, Bankir L (1984) Effect of long- and short-term antidiuretic hormone availability on internephron heterogeneity in the adult rat. Am J Physiol 246:F879–F888

    PubMed  CAS  Google Scholar 

  • Trinh Trang Tan MM, Antras J, Levillain O, Bankir L (1993) Adaptation of the medullary thick ascending limb to dietary protein intake. Exp Nephrol 1:158

    PubMed  CAS  Google Scholar 

  • Verkman AS, Lencer WI, Brown D, Ausiello DA (1988) Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature 333:268–269

    PubMed  CAS  CrossRef  Google Scholar 

  • Verlander JW, Madsen KM, Tisher CC (1987) Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct. Am J Physiol 252:F1142–F1156

    Google Scholar 

  • Verlander JW, Madsen KM, Larsson L, Cannon JK, Tisher CC (1989) Immuno- cytochemical localization of intracellular acidic compartments: rat proximal nephron. Am J Physiol 257:F454–F462

    PubMed  CAS  Google Scholar 

  • Vio CP, Figueroa CD (1985) Subcellular localization of renal kallikrein by ultrastruc- tural immunocytochemistry. Kidney Int 28:36–42

    PubMed  CAS  CrossRef  Google Scholar 

  • Wade JB, O’Neil RG, Pryor JL, Boulpaep EL (1979) Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J Cell Biol 81: 439–445

    PubMed  CAS  CrossRef  Google Scholar 

  • Wade JB, Stetson DL, Lewis SA (1981) ADH action: evidence for a membrane shuttle mechanism. Ann NY Acad Sci 372:106–117

    PubMed  CAS  CrossRef  Google Scholar 

  • Wade JB, Stanton B, Field MJ, Kashgarian M, Giebisch G (1990) Morphological and physiological responses to aldosterone: time course and sodium dependence. Am J Physiol 259:F88–F94

    PubMed  CAS  Google Scholar 

  • Wade JB, Stanton BA, Brown D (1992) Structural correlates of transport in distal tubule and collecting duct segments. In: Windhager EE (ed) Handbook of physiology: renal. Oxford University Press, New York, pp 1–10

    Google Scholar 

  • Wagner S, Vogel R, Lietzke R, Koob R, Drenckhahn D (1987) Immunocytochemical characterization of a band 3-like anion exchanger in collecting duct of human kidney. Am J Physiol 253:213–221

    Google Scholar 

  • Welling LW, Welling DJ (1975) Surface areas of brush border and lateral cell walls in the rabbit proximal nephron. Kidney Int 8:343–348

    PubMed  CAS  CrossRef  Google Scholar 

  • Welling LW, Welling DJ (1976) Shape of epithelial cells and intercellular channels in the rabbit proximal nephron. Kidney Int 9:385–394

    PubMed  CAS  CrossRef  Google Scholar 

  • Welling LW, Welling DJ, Hill JJ (1977) The shape of epithelial cells in rabbit thick ascending limb of Henle. Kidney Int 10:603

    Google Scholar 

  • Welling LW, Welling DJ, Hill JJ (1978) Shape of cells and intercellular channels in rabbit thick ascending limb of Henle. Kidney Int 13:144–151

    PubMed  CAS  CrossRef  Google Scholar 

  • Welling LW, Evan AP, Welling DJ (1981) Shape of cells and extracellular channels in rabbit cortical collecting ducts. Kidney Int 20:221–222

    CrossRef  Google Scholar 

  • Welling LW, Evan AP, Welling DJ, Gattone VH (1983) Morphometric comparison of rabbit cortical connecting tubules and collecting ducts. Kidney Int 23:358–367

    PubMed  CAS  CrossRef  Google Scholar 

  • Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HH (1992) Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci USA 89:11993–11997

    PubMed  CAS  CrossRef  Google Scholar 

  • Wingo CS, Madsen KM, Smolka A, Tisher CC (1990) H-K-ATPase immunoreactivity in cortical and outer medullary collecting duct. Kidney Int 38:985–990

    PubMed  CAS  CrossRef  Google Scholar 

  • Wolf G (1993) Regulating factors of renal tubular hypertrophy. Clin Invest 71: 867–870

    CAS  CrossRef  Google Scholar 

  • Wong T, Morgan TO, Alcorn D, Ryan GB (1986) Effect of sodium intake and sodium delivery to the macula densa on renal renin content and juxtaglomerular apparatus morphology. Clin Exp Pharmacol Physiol 13:267–270

    PubMed  CAS  CrossRef  Google Scholar 

  • Woodhall PB, Tisher CC (1973) Response of the distale tubule and cortical collecting duct to vasopressing in rat. J Clin Invest 52:3095–3108

    PubMed  CAS  CrossRef  Google Scholar 

  • Zalups RK (1989) Effect of dietary K+ and 75% nephrectomy on the morphology of principal cells in CCDs. Am J Physiol 256:F387–F396

    PubMed  CAS  Google Scholar 

  • Zalups RK, Stanton B, Wade JB, Giebisch G (1985) Structural adaptation in initial collecting tubule following reduction in renal mass. Kidney Int 27:636–642

    PubMed  CAS  CrossRef  Google Scholar 

  • Zalups RK, Henderson DA (1992) Cellular morphology in outer medullary collecting duct: effect of 75% nephrectomy and K+ depletion. Am J Physiol 263: F1119–F1127

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaissling, B., Dørup, J. (1995). Functional Anatomy of the Kidney. In: Greger, R.F., Knauf, H., Mutschler, E. (eds) Diuretics. Handbook of Experimental Pharmacology, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79565-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79565-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79567-1

  • Online ISBN: 978-3-642-79565-7

  • eBook Packages: Springer Book Archive