Skip to main content

Membrane Fusion Induced by the HIV env Glycoprotein: Purification of CD4 for Reconstitution Studies

  • Conference paper
Trafficking of Intracellular Membranes:

Part of the book series: NATO ASI Series ((ASIH,volume 91))

  • 100 Accesses

Abstract

Membrane fusion is the union of two bilayers resulting in a redistribution of aqueous contents and bilayer components. Fusion is a critical event in biological systems, being a required step during intracellular trafficking, cellular endocytosis and exocytosis, zygote formation, cellular attack (e.g., enveloped virus fusion) and several specialized processes. Despite progress in understanding membrane fusion regulation in a variety of biological systems, the mechanism of the fusion event itself remains unclear. Most model membranes are stable and do not fuse without an external trigger. Biological membrane fusion requires a specific mediator, which is presumed to be a protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alford D, Ellens H, Bentz J (1994) Fusion of influenza virus with sialic acid-bearing target membranes. Biochemistry 33: 1977–1987

    Article  PubMed  CAS  Google Scholar 

  • Allan JS (1993) Receptor-mediated activation of the viral envelope and viral entry. AIDS 7 (S1): S43–S50

    Article  PubMed  Google Scholar 

  • Bentz J In: Adv Membr Fluidity, vol 5. Aloia RC, Curtain CC, Gordon LM (eds) (1991) Membrane fusion: viral fusion proteins and lipid intermediates. Alan R. Liss, Inc., New York; pp. 259–287

    Google Scholar 

  • Bentz J (1993a) Viral Fusion Mechanisms. CRC Press Boca Raton, FL Bentz J In: Viral Fusion Mechanisms.

    Google Scholar 

  • Bentz J (ed) (1993b) Membrane fusion intermediates and the kinetics of membrane fusion. CRC Press Boca Raton; pp. 453–474

    Google Scholar 

  • Bentz J, Ellens H, Alford D (1990) An architecture for the fusion site of influenza hemagglutinin. FEBS Lett 276: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Bentz J, Ellens H, Alford D In: Viral Fusion Mechanisms. Bentz J (ed) (1993) Architecture of the influenza hemagglutinin fusion site. CRC Press Boca Raton; pp. 163–199

    Google Scholar 

  • Blobel CP, Wolfsberg TG, Turck CW, Myles DG, Primakoff P, White JM (1992) A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356: 248–252

    Article  PubMed  CAS  Google Scholar 

  • Broder CC, Berger EA (1993) CD4 molecules with a diversity of mutations encompassing the CDR3 region efficiently support human immunodeficiency virus type 1 envelope glycoprotein-mediated cell fusion. J Virol 67: 913–926

    PubMed  CAS  Google Scholar 

  • Broder CC, Dimitrov DS, Blumenthal R, Berger EA (1993) The block to HIV-1 envelope glycoprotein-mediated membrane fusion in animal cells expressing human CD4 can be overcome by a human cell component(s). Virology 193: 483–491

    Article  PubMed  CAS  Google Scholar 

  • Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Callebaut C, Jacotot E, Krust B, Hovanessian AG (1994) CD26 antigen and HIV fusion? Response. Science 264: 1162–1165

    Article  PubMed  CAS  Google Scholar 

  • Camerini D; Seed B (1990) A CD4 domain important for HIV-mediated syncytium formation lies outside the virus binding site. Cell 60: 747–754.

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Vasir B, Sodroski JG (1994) Changes in the cytopathic effects of human immunodeficiency virus type 1 associated with a single amino acid alteration in the ectodomain of the gp41 transmembrane glycoprotein. J Virol 68: 4662–4668

    PubMed  CAS  Google Scholar 

  • Carr CM, Kim PS (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73: 823–832

    Article  PubMed  CAS  Google Scholar 

  • Chuck RS, Cantor CR, Tse DB (1990) CD4 T-cell antigen receptor complexes on human leukemia T cells. Proc Natl Acad Sci USA 87: 5021–5025

    Article  PubMed  CAS  Google Scholar 

  • Corbeau P, Benkirane M, Weil R, David C, Emiliani S, Olive D, Mawas C, Serre A, Devaux C (1993) Ig CDR3-like region of the CD4 molecule is involved in HIV-induced syncytia formation but not in viral entry. J Immunol 150: 290–301

    PubMed  CAS  Google Scholar 

  • Cornet B, Decroly E, Ruysschaert J-M, Vandenbranden M In: Adv Membr Fluidity, vol 6, Membrane Interactions of HIV. Aloia RC, Curtain CC (eds) (1992) Reconstitution of human immunodeficiency virus envelope. Wiley-Liss New York; pp. 377–390

    Google Scholar 

  • Cudd A, Noonan CA, Tosi P-F, Melnick JL, Nicolau C (1990) Specific interaction of CD4-bearing liposomes with HIV-infected cells. J Acquir Immune Defic Synai 3: 109–114

    CAS  Google Scholar 

  • Dimitrov DS, Golding H, Blumenthal R (1991) Initial stages of HIV-1 envelope glycoprotein-mediated cell fusion monitored by a new assay based on redistribution of fluorescent dyes. AIDS Res Hum Retrovir 7: 799–805

    Article  PubMed  CAS  Google Scholar 

  • Doyle C, Strominger JL (1987) Interaction between CD4 and class IIMHC molecules mediates cell adhesion. Nature 330: 256–259

    Article  PubMed  CAS  Google Scholar 

  • Dubay JW, Roberts SJ, Hahn BH, Hunter E (1992) Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity. J Virol 66: 6616–6625

    PubMed  CAS  Google Scholar 

  • Düzgünes N, Bentz J In: Spectroscopic Membrane Probes, Vol. I. Loew LM (ed) (1988) Fluorescence assays for membrane fusion. CRC Press Boca Raton; pp. 117–159

    Google Scholar 

  • Ebenbichler CF, Röder C, Vornhagen R, Ratner L, Dierich MP (1993) Cell surface proteins binding to recombinant soluble HIV-1 and HIV-2 transmembrane proteins. AIDS 7: 489–495

    Article  PubMed  CAS  Google Scholar 

  • Ellens H, Bentz J, Mason D, Zhang F, White JM (1990) Fusion of influenza hemagglutinin-expressing fibroblasts with glycophorin-bearing liposomes: role of hemagglutinin surface density. Biochemistry 29: 9697–9707

    Article  PubMed  CAS  Google Scholar 

  • Ellens H, Larsen C In: Viral Fusion Mechanisms. Bentz J (ed) (1993) CD4-induced change in gp 120/41 conformation and its potential relationship to fusion. CRC Press Boca Raton; pp. 291–312

    Google Scholar 

  • Golding H, Manischewitz J, Vujcic L, Blumenthal R, Dimitrov DS (1994) The phorbol ester phorbol myristate acetate inhibits human immunodeficiency virus type 1 envelope-mediated fusion by modulating an accessory component(s) in CD4-expressing cells. J Virol 68: 1962–1969

    PubMed  CAS  Google Scholar 

  • Goto T, Harada S, Yamamoto N, Nakai M (1988) Entry of human immunodeficiency virus (HIV) into MT-2, human T cell leukemia virus carrier cell line. Archives of Virology 102: 29–38

    Article  PubMed  CAS  Google Scholar 

  • Grewe C, Beck A, Gelderblom, HR (1990) HIV: early virus-cell interactions. J Acquir Immune Defic Syndr 3: 965–974

    PubMed  CAS  Google Scholar 

  • Harrington RD, Geballe AP (1993) Cofactor requirement for human immunodeficiency virus type 1 entry into a CD4-expressing human cell line. J Virol 67: 5939–5947

    PubMed  CAS  Google Scholar 

  • Henderson LA, Qureshi MN (1993) A peptide inhibitor of human immunodeficiency virus infection binds to novel human cell surface polypeptides. J Biol Chem 268: 15291–15297

    PubMed  CAS  Google Scholar 

  • Jonak ZL, Clark RK, Matour D, Trulli S, Craig R, Henri E, Lee E, Greig R, Debouck C (1993) A human lymphoid cell line with functional human immunodeficiency virus type 1 evelope. AIDS Res Hum Retroviruses 9: 23–31

    Article  PubMed  CAS  Google Scholar 

  • Klatzmann D, Gluckman JC (1986) HIV infection: facts and hypotheses. Immunology Today 7: 291–296

    Article  Google Scholar 

  • Kowalski M, Bergeron L, Dorfman T, Haseltine W, Sodroski J (1991) Alteration of human immunodeficiency virus type 1 cytopathic effect by a mutation affecting the transmembrane envelope glycoprotein. J Virol 65: 281–291

    PubMed  CAS  Google Scholar 

  • Larsen CE, Alford DR, Young LJT, McGraw TP, Düzgünes N (1990) Fusion of simian immunodeficiency virus with liposomes and erythrocyte ghost membranes: effects of lipid composition, pH and calcium. J Gen Virol 71: 1947–1955

    Article  PubMed  CAS  Google Scholar 

  • Larsen C, Ellens H, Bentz J In: Adv Membr Fluidity, vol 6, Membrane Interactions of HIV. Aloia RC, Curtain CC (eds) (1992) Membrane fusion induced by the human immunodeficiency virus env glycoprotein. Wiley-Liss New York; pp. 143–166

    Google Scholar 

  • Larsen CE, Nir S, Alford DR, Jennings M, Lee K-D, Düzgünes N (1993) Human immunodeficiency virus type 1 (HIV-1) fusion with model membranes: kinetic analysis and the role of lipid composition, pH and divalent cations. Biochim Biophys Acta 1147: 223–236

    Article  PubMed  CAS  Google Scholar 

  • Littman DR, Maddon PJ, Axel R (1988) Corrected CD4 sequence. Cell 55: 541

    Article  PubMed  CAS  Google Scholar 

  • Long D, Berson JF, Cook DG, Doms RW (1994) Characterization of human immunodeficiency virus type 1 gp120 binding to liposomes containing galactosylceramide. J Virol 68: 5890–5898

    PubMed  CAS  Google Scholar 

  • Marcon L, Sodroski J (1994) Gp120-independent fusion mediated by the human immunodeficiency virus type 1 gp41 envelope glycoprotein: a reassessment. J Virol 68: 1977–1982

    PubMed  CAS  Google Scholar 

  • Moore JP, Jameson BA, Weiss RA, Sattentau Q In: Viral Fusion Mechanisms. Bentz J (ed) (1993a) The HIV-cell fusion reaction. CRC Press Boca Raton; pp. 233–289

    Google Scholar 

  • Moore J, Sattentau Q, Jameson B, Sodroski J (1993b) Monoclonal antibodies to HIV-1 gp120: a request AIDS Res Hum Retrovir 9: 695

    Article  CAS  Google Scholar 

  • Moore JP, Sattentau QJ, Wyatt R, Sodroski J (1994) Probing the structure of the human immunodeficiency virus surface glycoprotein gp120 with a panel of monoclonal antibodies. J Virol 68: 469–484

    PubMed  CAS  Google Scholar 

  • Nicolau C, Tosi, P-F, Arvinte T, Mouneimne Y, Cudd A, Sneed L, Madoulet C, Schulz B, Barhoumi R In: Horizons in Membrane Biotechnology. (1990) CD4 inserted in red blood cell membranes or reconstituted in liposome bilayers as a potential therapeutic agent against AIDS. Wiley-Liss New York; pp. 147–177

    Google Scholar 

  • Owens RJ, Burke C, Rose JK (1994) Mutations in the membrane-spanning domain of the human immunodeficiency virus envelope glycoprotein that affect fusion activity. J Virol 68: 570–574

    PubMed  CAS  Google Scholar 

  • Pauza CD, Price TM (1988) Human immunodeficiency virus infection of T cells and monocytes proceeds via receptor-mediated endocytosis. J Cell Biol 107: 959–968

    Article  PubMed  CAS  Google Scholar 

  • Perez LG, O’Donnell MA, Stephens EB (1992) The transmembrane glycoprotein of human immunodeficiency virus type 1 induces syncytium formation in the absence of the receptor binding glycoprotein. J Virol 66: 4134–4143

    PubMed  CAS  Google Scholar 

  • Pun A, Dimitrov DS, Golding H, Blumenthal R (1992) Interactions of CD4+ plasma membrane vesicles with HIV-1 and HIV-1 envelope glycoprotein-expressing cells. J Acquir Immune Defic Syndr 5: 915–920

    Google Scholar 

  • Rudd CE, Trevillyan JM, Dasgupta JD, Wong LL, Schlossman SF (1988) The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp56) from human T lymphocytes. Proc Natl Acad Sci USA 85: 5190–5196

    Article  PubMed  CAS  Google Scholar 

  • Sato AI, Balamuth FB, Ugen KE, Williams W, Weiner DB (1994) Identification of CD7 glycoprotein as an accessory molecule in HIV-1-mediated syncytium formation and cell-free infection. J Immunol 152: 5142–5152

    PubMed  CAS  Google Scholar 

  • Silvius JR (1992) Solubilization and functional reconstitution of biomembrane components. Annu Rev Biophys Biomol Struct 21: 323–348

    Article  PubMed  CAS  Google Scholar 

  • Sinangil F, Loyter A, Volsky DJ (1988) Quantitative measurement of fusion between human immunodeficiency virus and cultured cells using membrane fluorescence dequenching. FEBS Lett 239: 88–92

    Article  PubMed  CAS  Google Scholar 

  • Smith SD, Shatsky M, Cohen PS, Warnke R, Link MP, Glader BE (1984) Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines. Cancer Res 44: 5657–5661

    PubMed  CAS  Google Scholar 

  • Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362: 318–324

    Article  PubMed  Google Scholar 

  • Stamatatos L, Düzgünes N (1993) Simian immunodeficiency virus (SIVmac251) membrane lipid mixing with human CD4+ and CD4- cell lines in vitro does not necessarily result in internalization of the viral core proteins and productive infection. J Gen Virol 74: 1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Stefano KA, Collman R, Kolson D, Hoxie J, Nathanson N, Gonzalez-Scarano F (1993) Replication of a macrophage-tropic strain of human immunodeficiency virus type 1 (HTV-1) in a hybrid cell line, CEMx174, suggests that cellular accessory molecules are required for HIV-1 entry. J Virol 67: 6707–6715

    PubMed  CAS  Google Scholar 

  • Stein BS, Gowda SD, Lifson JD, Penhallow RC, Bensch, KG, Engleman EG (1987) pH-Independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell 49: 659–668

    Article  PubMed  CAS  Google Scholar 

  • Sweet RW, Truneh A, Hendrickson WA (1991) CD4: its structure, role in immune function and AIDS pathogenesis, and potential as a pharmacological target. Curr Opinion Biotech 2: 622–633

    Article  CAS  Google Scholar 

  • Webb NR, Madoulet C, Tosi P-F, Broussard DR, Sneed L, Nicolau C, Summers MD (1989) Cell surface expression and purification of human CD4 produced in baculovirus-infected ceUs. Proc Natl Acad Sci USA 86: 7731–7735

    Article  PubMed  CAS  Google Scholar 

  • White JM (1992) Membrane fusion. Science 258: 917–924

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Larsen, C., Patel, A., Bentz, J. (1995). Membrane Fusion Induced by the HIV env Glycoprotein: Purification of CD4 for Reconstitution Studies. In: De Lima, M.C.P., Düzgüneş, N., Hoekstra, D. (eds) Trafficking of Intracellular Membranes:. NATO ASI Series, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79547-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79547-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79549-7

  • Online ISBN: 978-3-642-79547-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics