Potential Role of Aluminium Toxicity in Nutrient Deficiencies as Related to Forest Decline: An Assessment of Soil Solution Data from the Vosges Mountains

  • J.-P. Boudot
  • T. Becquer
  • D. Merlet
  • J. Rouiller
  • J. Ranger
  • E. Dambrine
  • D. A. Mohamed
Conference paper


Two of the most striking features of acid soils are their high exchangeable Al content and their low base cation status. Although acid soils have proved to be unsuitable for a number of agricultural species, most of them have till now allowed the development of forest ecosystems. The natural occurrence of soluble, organically complexed, Al has been recognized for many years in podzolic soils (Kononova 1961; Duchaufour 1970; David and Driscoll 1984; Dahlgren and Ugolini 1989). The existence of soluble inorganic Al in acid brown soils, mainly arising from acidification due to biological processes (nitrification, mineralization of organic sulphur), is a more recent observation (Ulrich et al. 1980; van Breemen et al. 1987; Nys 1987; Becquer 1991; Baur and Feger 1992). A number of tree species have adapted to such chemical conditions. Due to atmospheric pollution and related acid deposition, base cation content in soils and soil solutions has strongly decreased in the last decades in some areas (Falkengren-Grerup and Eriksson 1990; Hallbäcken 1992; Joslin et al. 1992), whereas concentrations of soluble Al have been assumed to increase. Moreover, important changes in Al spe-ciation are expected to occur in many acid ecosystems, with possible partial decomplexation of soluble organic Al due to pH decrease. Whether the vegetation will adapt to such environmental alterations is uncertain. The toxicity of soluble Al for many agricultural species is well known, most of them being sensitive to Ca deficiency as well (Foy 1988; Rengel 1992). More recently, it was hypothesized that either Al toxicity (Ulrich et al. 1980; Hüttermann and Ulrich 1984) or deficiencies in Mg or Ca (Zöttl and Hüttl 1986; Joslin et al. 1988) could also be involved in forest decline. Strong arguments in support of the occurrence of Mg x Al and Ca x Al interactions have been reported (Godbold et al. 1988; Joslin and Wolfe 1992; Schlegel et al. 1992).


Biomass Clay Magnesium Manganese Sandstone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams F, Lund ZF (1966) Effect of chemical activity of soil solution aluminum on cotton oot penetration of acid subsoils. Soil Sci 101:193–198CrossRefGoogle Scholar
  2. Alva AK, Asher CJ, Edwards DG (1986) The role of calcium in alleviating aluminium toxicity. Aust J Agric Res 37:375–382CrossRefGoogle Scholar
  3. Alva AK, Kerven GL, Edwards DG, Asher CJ (1991) Reduction in toxic aluminum to plants by sulphate complexation. Soil Sci 152:351–359CrossRefGoogle Scholar
  4. Arp PA, Meyer WL (1985) Formation contants for selected organo-metal (Al3+, Fe3+)-phosphate complexes. Can J Chem 63:3357–3366CrossRefGoogle Scholar
  5. Arp PA, Strucel I (1989) Water uptake by black spruce seedlings from rooting media (solution, sand, peat) treated with inorganic and oxalated aluminum. Water Air Soil Pollut 44:57–70CrossRefGoogle Scholar
  6. Asp H, Berggren D (1990) Phosphate and calcium uptake in beech(Fagus sylvatica) in the presence of aluminium and natural fulvic acid. Physiol Plant 80:307–314CrossRefGoogle Scholar
  7. Bartlett RJ, Riego DC (1972) Toxicity of hydroxy aluminum in relation to pH and phosphorus. Soil Sci 114:194–200CrossRefGoogle Scholar
  8. Baur S, Feger KH (1992) Importance of natural soil processes relative to atmospheric deposition in the mobility of aluminium in forested watersheds of the Black Forest. Environ Pollut 77:99–105CrossRefGoogle Scholar
  9. Becquer T (1991) Production endogène de protons par les cycles de l’azote et du soufre dans deux sapinières vosgiennes: bilans saisonniers et incidence sur la toxicité de l’aluminium. Thèse, Univ Nancy, p 142Google Scholar
  10. Becquer T, Merlet D, Boudot J-P, Rouiller J, Gras F (1990) Nitrification and nitrate uptake: leaching balance in a declined forest ecosystem from eastern France. Plant and Soil 125:95–107CrossRefGoogle Scholar
  11. Becquer T, Boudot J-P, Merlet D, Rouiller J (1992) Incidence des cycles de l’azote et du soufre sur le bilan de protons d’un écosystème forestier dépérissant. Relation avec la toxicité aluminique. C R Acad Sci Paris Série II 314(5):527–532Google Scholar
  12. Blarney FPC, Edmeades DC, Wheeler DM (1992) Empirical models to approximate calcium and magnesium ameliorative effects and genetic differences in aluminium tolerance in wheat. Plant and Soil 144:281–287CrossRefGoogle Scholar
  13. Bonneau M (1991) Effets de la pollution atmosphérique par l’intermédiaire du sol. In: Landmann G (ed) Les recherches en France sur le dépérissement des forêts. Programme DEFORPA, 2ème rapport, ENGREF, Nancy, France, pp 95–109Google Scholar
  14. Bottero JY, Marchai J-P, Poirier J-E, Cases JM, Fiessinger F (1982a) Etude, par RMN de rAluminium-27, des solutions diluées de chlorure d’aluminium partiellement neutralisées. Bull Soc Chim France 11–12:1-439–444Google Scholar
  15. Bottero JY, Tchoubar D, Cases JM, Fiessinger F (1982b) Investigation of the hydrolysis of aqueous solutions of aluminium chloride. 2. Nature and structure by small-angle X-ray scattering. J Phys Chem 86:3667–3670Google Scholar
  16. Boxman AW, Krabbendam H, Bellemakers MJS, Roelofs JGM (1991) Effects of ammonium and aluminium on the development and nutrition of Pinus nigra in hydroculture. Environ Pollut 73:119–136CrossRefGoogle Scholar
  17. Browne BA, Driscoll CT (1992) Soluble aluminum silicates: stoichiometry, stability, and implications for environmental geochemistry. Science 256:1667–1670CrossRefGoogle Scholar
  18. Cameron RS, Ritchie GSP, Robson AD (1986) Relative toxicities of inorganic aluminum complexes to barley. Soil Sci Soc Am J 50:1231–1236CrossRefGoogle Scholar
  19. Cumming JR, Weinstein LH (1990) Aluminum-mycorrhizal interactions in the physiology of pich pine seedlings. Plant and Soil 125:7–18CrossRefGoogle Scholar
  20. Dahlgren RA, Ugolini FC (1989) Aluminum fractionation of soil solutions from unperturbed and tephra-treated spodosols, Cascade Range, Washington, USA. Soil Sci Soc Am J 53:559–566CrossRefGoogle Scholar
  21. David MB, Driscoll CT (1984) Aluminium speciation and equilibria in soil solutions of a haplorthod in the Adirondack mountains (New York, USA). Geoderma 33:297–318CrossRefGoogle Scholar
  22. Devêvre O, Garbaye J, Le Tacon F, Perrin R, Estivalet D (1995) Role of rhizosphere microflora in the decline of Norway spruce in acidic soils. In: Landmann G, Bonneau M (eds), Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin Heidelberg New York, this vol.Google Scholar
  23. Duchaufour P (1970) Précis de Pédologie. Masson, Paris, 3rd ed., 481 p.Google Scholar
  24. Duffield JR, Edwards K, Evans DA, Morrish DM, Vobe RA, Williams DR (1991) Low molecular mass aluminum complex speciation in biofluids. J Coord Chem 23:277–290CrossRefGoogle Scholar
  25. Falkengren-Grerup U, Eriksson H (1990) Changes in soil, vegetation and forest yield between 1947 and 1988 in beech and oak sites of southern Sweden. For Ecol Manage 38:37–53CrossRefGoogle Scholar
  26. Foy CD (1988) Plant adaptation to acid, aluminium-toxic soils. Comm Soil Sci Plant Anal 19:959–987CrossRefGoogle Scholar
  27. Geburek T, Scholz F, Bergmann F (1986) Variation in aluminum sensitivity among Picea abies (L) Karst seedlings and genetic differences between their mother trees as studied by isozyme-gene-markers. Angew Bot 60:451–460Google Scholar
  28. Godbold DL (1991) Aluminium decreases root growth and calcium and magnesium uptake in Picea abies seedlings. In: Wright RJ et al (eds)Plant-soil interactions at low pH. Kluwer Acad Publ, p 747-753Google Scholar
  29. Godbold DL, Fritz E, Hütterman A (1988) Aluminum toxicity and forest decline. Proc Natl Acad Sci USA 85:3888–3892CrossRefGoogle Scholar
  30. Göransson A, Eldhuset TD (1991) Effects of aluminium on growth and nutrient uptake of small Picea abies and Pinus sylvestris plants. Trees 5:136–142CrossRefGoogle Scholar
  31. Grauer UE and Horst W (1991) Comments on the Calcium-Aluminium Balance (CAB). Soil Sci Soc Am J 55:897–898CrossRefGoogle Scholar
  32. Hallbäcken L (1992) Long term changes of base cation pools in soil and biomass in a beech and a spruce forest of southern Sweden. Z Pflanzenernähr Bodenk 155:51–60CrossRefGoogle Scholar
  33. Hecht-Buchholz C, Jörns CA, Keil P (1987) Effect of excess aluminum and manganese on Norway spruce seedlings as related to magnesium nutrition. J Plant Nutr 10:1103–1110CrossRefGoogle Scholar
  34. Helliwell S, Batley GE, Florence TM, Lumsden BG (1983) Speciation and toxicity of aluminium in a model freshwater. Environ Technol Lett 4:141–144CrossRefGoogle Scholar
  35. Horst WJ, Klotz F, Szulkiewicz P (1990) Mechanical impedance increases aluminium tolerance of soybean Glycine max) roots. Plant and Soil 124:227–231CrossRefGoogle Scholar
  36. Hue NV, Craddock GR, Adams F (1986) Effect of organic acids on aluminum toxicity in subsoils. Soil Sci Soc Am J 50:28–34CrossRefGoogle Scholar
  37. Hintermann A, Ulrich B (1984) Solid phase-solution-root interactions in soils subjected to acid deposition. Phil Trans R Soc London B 305:353–368CrossRefGoogle Scholar
  38. James BR, Riha SJ (1989) Aluminum leaching by mineral acids in forest soils: I. nitric-sulfuric acid differences. Soil Sci Soc Am J 53:259–264Google Scholar
  39. Jentschke G, Godbold DL, Hintermann A (1991) Culture of mycorrhizal tree seedlings under controlled conditions: effects of nitrogen and aluminium. Physiol Plant 81:408–416CrossRefGoogle Scholar
  40. Joslin JD, Wolfe MH (1988) Responses of red spruce seedling to changes in soil aluminum in six amended forest soil horizons. Can J For Res 18:1614–1623CrossRefGoogle Scholar
  41. Joslin JD, Kelly JM, Wolfe MH, Rustad LE (1988) Elemental patterns in roots and foliage of mature spruce across a gradient of soil aluminium. Water Air Soil Pollut 40:375–390Google Scholar
  42. Joslin JD, Kelly JM, Van Migroet H (1992) Soil chemistry and nutrition of north American spruce-fir stands: evidence for recent change. J Environ Qual 21:12–30CrossRefGoogle Scholar
  43. Kinraide TB (1990) Assessing the rhizotoxicity of the aluminate ion, A1(OH)4-.Plant Physiol 94:1620–1625CrossRefGoogle Scholar
  44. Kinraide TB (1991) Identity of the rhizotoxic aluminium species. Plant and Soil 134:167–178Google Scholar
  45. Kinraide TB, Parker DR (1987) Cation amelioration of aluminum toxicity in wheat. Plant Physiol 83:546–551CrossRefGoogle Scholar
  46. Kononova MM (1961) Soil organic matter. Its nature, its role in soil formation and in soil fertility. Pergamon Press, p 450Google Scholar
  47. Landmann G, Bonneau M, Adrian M (1987) Le dépérissement du sapin pectiné et de l’épicéa commun dans le massif vosgien est-il en relation avec l’état nutritionnel des peuplements ? Rev For Fr 39:5–11CrossRefGoogle Scholar
  48. Landmann G, Bonneau M, Bouhot-Delduc L, Fromard F, Chéret V, Dagnac J, Souchier B (1995) Crown damage in conifers: relation to nutritional status and soil chemical characteristics in the French mountains. In: Landmann G, Bonneau M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin Heidelberg New York, this vol.CrossRefGoogle Scholar
  49. Lund ZF (1970) The effect of calcium and its relation to several cations in soybean root growth. Soil Sci Soc Am Proc 34:456–459CrossRefGoogle Scholar
  50. Mehra OP, Jackson ML (1960) Iron-oxide removal from soils and clays by a ithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals 7:317–327CrossRefGoogle Scholar
  51. Neitzke M (1990) Stickstoffernährung und Al-toxizität bei Buchenjungpflanzen. I: Entwicklung von Buchenjungpflanzen in Abhängigkeit von der Form der Stickstoffer-nährung und dem Aluminiumgehalt der Nährlösung. Z Planzenernähr Bodenk 153:229–234CrossRefGoogle Scholar
  52. Noble AB, Fey MV, Sumner ME (1988) Calcium-aluminium balance and the growth of soybean roots in a nutrient solution. Soil Sci Soc Am J 52:1651–1656CrossRefGoogle Scholar
  53. Nordstrom DK, May HM (1989) Aqueous equilibrium data for mononuclear aluminum species. In: Sposito G (ed) The environmental chemistry of aluminum. CRC Press, Boca Raton, Florida, Chap 2, pp 29–55Google Scholar
  54. Nys C (1987) Fonctionnement du sol d’un écosystème forestier: Etude des modifications dues à la substitution d’une plantation d’épicéa commun (Picea abies) à une forêt feuillue mélangée des Ardennes. Thèse, Univ Nancy I, p 207Google Scholar
  55. Ogner G, Teigen O (1980) Effects of acid irrigation and liming on two clones of Norway spruce. Plant and Soil 57:305–321CrossRefGoogle Scholar
  56. Parker DR, Kinraide TB, Zelazny LW (1988) Aluminum speciation and phytotoxicity in dilute hydroxy-aluminum solutions. Soil Sci Soc Am J 52:438–444CrossRefGoogle Scholar
  57. Parker DR, Kinraide TB, Zelazny LW (1989) On the phytotoxicity of polynuclear hydroxy-aluminum species. Soil Sci Soc Am J 53:789–796CrossRefGoogle Scholar
  58. Raison RJ, Connell MJ, Khanna PK (1987) Methodology for studying fluxes of soil mineral-N in situ. Soil Biol Biochem 19:521–530CrossRefGoogle Scholar
  59. Raynal DJ, Joslin JD, Thornton FC, Schaedle M, Henderson GS (1990) Sensitivity of tree seedlings to aluminium: III red spruce and loblolly pine. J Environ Qual 19:180–187CrossRefGoogle Scholar
  60. Rengel Z (1992) Role of calcium in aluminium toxicity. New Phytol 121:499–513CrossRefGoogle Scholar
  61. Ritsema CJ (1993) Estimation of activity coefficients of individual ions in solutions with ionic strengths up to 0.3 mol dm-3. J Soil Sci 44:307–315CrossRefGoogle Scholar
  62. Rost-Siebert K (1984) Aluminium toxicity in seedlings of Norway spruce (Picea abies Karst) and beech (Fagus sylvatica L). In: Anderson F, Kelly JM (eds) Aluminium toxicity in trees. Swedish University of Agricultural Sciences, Uppsala, Sweden, pp 49–68Google Scholar
  63. Rouiller J, Guillet B, Bruckert S (1980) Cations acides échangeables et acidités de surface. Approche analytique et incidences pédogénétiques. Sci Sol 2:161–175Google Scholar
  64. Schaedle M, Thornton FC, Raynal DJ, Tepper HB (1989) Response of tree seedlings to aluminum. Tree Physiol 5:337–356Google Scholar
  65. Schecher WD (1989) Alchemi 4.1 program. Privately distributed.Google Scholar
  66. Schecher WD, McAvoy D (1992) Mineql+: A software environment for chemical equilibrium modeling. Comput Environ Systems 16:65–76CrossRefGoogle Scholar
  67. Schlegel H, Amundson RG, Hüttermann A (1992) Element distribution in red spruce (Picea rubens) fine roots; evidence for aluminium toxicity at Whiteface Mountain. Can J For Res 22:1132–1138.CrossRefGoogle Scholar
  68. Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Z Pflanzenernähr Düng Bodenk 105:195–202CrossRefGoogle Scholar
  69. Stumm W, Morgan JJ (1981) Aquatic chemistry, 2nd ed. Wiley, New York, p 780Google Scholar
  70. Tang V H, Nga TT, Laudelou H (1989) Effect of aluminium on the mineral nutrition of rice. Plant and Soil 114:173–185CrossRefGoogle Scholar
  71. Thornton FC, Schaedle M, Raynal DJ (1987) Effects of aluminum on red spruce seedlings in solution culture. Environ Exp Bot 27:489–498CrossRefGoogle Scholar
  72. Truesdell AH, Jones BF (1974) Wateq, a computer program for calculating chemical equilibria of natural waters. J Res US Geol Survey 2:233–248Google Scholar
  73. Ulrich B, Mayer R, Khanna PK (1980) Chemical changes due to acid precipitation in a loess-derived soil in central Europe. Soil Sci 130:193–199CrossRefGoogle Scholar
  74. Ulrich B, Meiwes KJ, König N, Khanna PK (1984) Criteria proposed for the evaluation of risks caused by soil acidity. In: Anderson F, Kelly JM (eds) Aluminium toxicity in trees. Swedish Univ Agric Sciences, Uppsala, Sweden, pp 69–70Google Scholar
  75. Ulrich B (1989) Effects of acidic precipitation on forest ecosystems in Europe. In: Adriano DC, Jonson AH (eds) Advances in environmental science, Acidic precipitation, Vol 2, New York, pp 189–272Google Scholar
  76. van Breemen N, Mulder J, van Grinsven JJM (1987) Impact of acid atmospheric deposition on woodland soils in the Netherlands: II nitrogen transformations. Soil Sci Soc Am J 51:1634–1640CrossRefGoogle Scholar
  77. van Praag HJ, Weissen F (1985) Aluminium effects on spruce and beech seedlings. I. Preliminary observations on plant and soil. Plant and Soil 83:331–338Google Scholar
  78. Vogt KA, Edmonds RL, Grier CC, Piper S (1980) Seasonal changes in mycorrhizal and fibrous-textured root biomass in 23-and 180-year-old Pacific silver fir stands in western Washington. Can J For Res 10:523–529CrossRefGoogle Scholar
  79. Wilkins DA, Hodson MJ (1989) The effects of aluminium and Paxillus involutes Fr on the growth of Norway spruce [Picea abies (L) Karst]. New Phytol 113:225–232CrossRefGoogle Scholar
  80. Zöttl HW, Hüttl RF (1986) Nutrient supply and forest decline in Southwest-Germany. Water Air Soil Pollut 31:449–462.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J.-P. Boudot
    • 1
  • T. Becquer
    • 1
  • D. Merlet
    • 1
  • J. Rouiller
    • 1
  • J. Ranger
    • 2
  • E. Dambrine
    • 2
  • D. A. Mohamed
    • 2
  1. 1.CNRS, Centre de Pédologie BiologiqueUPR 6831 associated with the University of Nancy IVandoeuvre-les-NancyFrance
  2. 2.Unité Microbiologie et Biogéochimie des Ecosystèmes ForestiersINRA — Centre de NancyChampenouxFrance

Personalised recommendations