Kinetic Analysis of the Origin of the Triple Point Configuration

  • V. V. Aristov
  • I. N. Shyshkova
  • F. G. Tcheremissine
Conference paper

Abstract

The initial stage of the formation of the triple point shock wave configuration is studied on the basis of the Boltzmann kinetic equation. The Direct Numerical Method of solution is applied for the problem of shock wave reflection from a wedge. Computations performed for different values of incident shock wave Mach number, wedge angle and boundary conditions show the influence of these factors on the flow structure that leads to the regular or the triple point configuration of shocks. Comparisons with known experimental data are presented.

Key words

Shock wave Mach reflection Numerical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aristov VV, Tcheremissine FG (1980) Conservative splitting method for solving the Boltzmann equation. USSR Journ. Comp. Math. and Math. Phys. 20, 1: 191–207MATHGoogle Scholar
  2. Fuchs F, Schmidt B (1991) Shock wave interaction with the leading edge of a wedge. In: Beylich A (ed) Proc. 17-th Intl. Symposium on Rarefied Gas Dynamics. VCH Verlagsgesellschaft, Weinheim, p 239Google Scholar
  3. Korobov M (1989) Trigonometric Sums and their Applications. Nauka, Moscow (in Russian)MATHGoogle Scholar
  4. Schmidt B (1988) Structure of incident triple point at the transition from regular to Mach reflection. In: Muntz EP et al. (eds) Rarefied Gas Dynamics: Theoretical and Computational Techniques. AIAA INC, Washington DC, p 597Google Scholar
  5. Seiler F, Oertel H, Schmidt B (1988) Direct Simulation Monte Carlo method of shock reflection on a wedge. In: Muntz EP et al. (eds) Rarefied Gas Dynamics: Theoretical and Computational Techniques. AIAA INC, Washington DC, p 518Google Scholar
  6. Tcheremissine FG (1991) Fast solutions of the Boltzmann equationn. In: Beylich A (ed) Proc. 17-th Intl. Symp. on Rarefied Gas Dynamics. VCH Verlaggsgesellschaft, Weinheim, p 273Google Scholar
  7. Walenta ZA (1987) Mach reflection of a moving plane shock wave under rarefied flow conditions. In: Grönig H (ed) Proc. 16th Intl. Symp.on Shock Waves and Shock Tubes, VCH Verlagsgesellschaft, Weinheim, p 535Google Scholar
  8. Xu DQ, Honma H (1991) Numerical simulation for nonstationary Mach reflection of a shock wave: A kinetic-model approach. Shock Waves 1: 43–49CrossRefMATHADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • V. V. Aristov
    • 1
  • I. N. Shyshkova
    • 1
  • F. G. Tcheremissine
    • 1
  1. 1.Computing Center of the Russian Academy of SciencesMoscowRussia

Personalised recommendations