Skip to main content

General Aspects of NADPH Cytochrome P450 Reductase and Cytochrome b5

  • Conference paper
Molecular Aspects of Oxidative Drug Metabolizing Enzymes

Part of the book series: NATO ASI Series ((ASIH,volume 90))

Abstract

In 1968, Lu and Coon demonstrated, for the first time, that the oxidative hydroxylase system of endoplasmic reticulum for liver cells is composed of three essential components: cytochrome P450 (EC 1.14.14.1), NADPH cytochrome P450 reductase (EC 1.6.2.4), and a heat stable factor subsequently shown to be phosphatidylcholine (Strobel et al. 1970), which can be reconstituted to an enzymatically active enzyme system. This study paved the way to innumerable biochemical, toxicological, and pharmacological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Sugita Y (1979) Properties of cytochrome b5 and methemoglobin reduction in human erythrocytes. Eur J Biochem 101: 423–428

    Article  PubMed  CAS  Google Scholar 

  • Abe K, Kimura S, Kizawa R, Anan FK, Sugita Y (1985) Amino acid sequences of cytochrome b5 from human, porcine, and bovine erythrocytes and comparison with liver cytochrome P450. J Biochem (Tokyo) 97: 1659–1668

    CAS  Google Scholar 

  • Adali O, Arinç E (1990) Electrophoretic, spectral, catalytic and immunochemical properties of highly purified cytochrome P450 from sheep lung. Int J Biochem 22: 1433–1444

    Article  PubMed  CAS  Google Scholar 

  • Adali O, Arinç E (1992) Further characterization of sheep lung cytochrome P450LgM2. In: Archakov AI, Bachmanova GI (eds) Cytochrome P450: biochemistry and biophysics. INCO-TNC, Moscow, pp 51–53

    Google Scholar 

  • Arinç, E (1991) Essential features of NADH dependent cytochrome b5 reductase and cytochrome b5 of liver and lung microsomes. In: Arinç E, Schenkman JB, Hodgson E (eds) Molecular aspects of monooxygenases and bioactivation of toxic compounds. Plenum Press, New York, pp 149–170

    Google Scholar 

  • Arinç E, Rzepecki LM, Strittmatter P (1987) Topography of the C terminus of cytochrome b5 tightly bound to dimyristoylphosphatidylcholine vesicles. J Bio) Chem 262: 15563–15567

    Google Scholar 

  • Baggot JP, Langdon RG (1970) The relation of reduced triphosphopyridine nucleotide cytochrome c reductase structure to its interaction with cofactors. J Biol Chem 245: 5888–5896

    Google Scholar 

  • Beck von Bodman S, Schuler MA, Jollie DR, Sligar ST (1992) Synthesis, bacterial expression and mutagenesis of the gene coding for mammalian cytochrome b5. Proc Natl Acad Sci USA 83: 9443–9447

    Article  Google Scholar 

  • Black S, Coon MJ (1982) Structural features of liver microsomal NADPH- cytochrome P450 reductase. Hydrophobic domain, hydrophilic domain, and connecting region. J Biol Chem 257: 5929–5938

    PubMed  CAS  Google Scholar 

  • Bonfils C, Saldana J-L, Balny C, Maurel P (1991) Electron transfer from cytochrome b5 to cytochrome P450. In: Arinç E, Schenkman JB, Hodgson E (eds) Molecular aspects of monooxygenases and bioactivation of toxic compounds. Plenum Press, New York, pp 171–183

    Google Scholar 

  • Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P450 reductase. Nature 351: 714–718

    Article  PubMed  CAS  Google Scholar 

  • Dailey HA, Strittmatter P (1979) Modification and identification of cytochrome b5 carboxyl groups involved in protein-protein interactions with cytochrome b5 reductase. J Biol Chem 254: 5388–5396

    PubMed  CAS  Google Scholar 

  • D’ Arrigo A, Manera E, Longhi R, Borgese N (1993) The specific subcellular localization of two isoforms of cytochrome b5 suggests novel targeting pathways. J Biol Chem 268: 2802–2808

    PubMed  Google Scholar 

  • Dignam JD, Strobel HW (1977) NADPH-cytochrome P-450 reductase form rat liver: purification by affinity chromatography and characterization. Biochemistry 16: 1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Fan LL, Masters BSS (1974) Properties of purified kidney microsomal NADPH-cytochrome c reductase. Arch Biochem Biophys 165: 665–671

    Article  PubMed  CAS  Google Scholar 

  • French JS, Coon MJ (1979) Properties of NADPH-cytochrome P-450 reductase purified from rabbit liver microsomes. Arch Biochem Biophys 195: 565–577

    Article  PubMed  CAS  Google Scholar 

  • Funk WD, Lo TP, Mauk MR, Brayer GD, MacGillioray RTA, Mauk AG (1990) Mutagenic, electrochemical and crystallographic investigation of the cytochrome b5 oxidation-reduction equilibrium: Involvement of asparigine-57, serine-64, and heme propionate-7. Biochemistry 29: 5500–5508

    Article  PubMed  CAS  Google Scholar 

  • Gibson BW, Falick AM, Lipka JJ, Waskel LA (1990) Mass spectrometric analysis of rabbit and bovine trypsin-solubilized cytochrome b5. J Prot Chem 9: 695–703

    Article  CAS  Google Scholar 

  • Giordano SJ, Steggles AW (1991) The human liver and reticulocyte cytochrome b5 mRNAs are products from a single gene. Biochem Biophys Res Commun 178: 38–44

    Article  PubMed  CAS  Google Scholar 

  • Guiles RD, Altman J, Kuntz ID, Waskel L, (1990) Structural studies of cytochrome b5: Complete sequence-specific resonance assignments for the trypsin-solubilized microsomal ferrocytochrome b5 obtained from pig and calf. Biochemistry 29: 1276–1289

    Article  PubMed  CAS  Google Scholar 

  • Gum JR, Strobel HW (1981) Isolation of the membrane-binding peptide of NADPH-cytochrome P-450 reductase. J Biol Chem 256: 7478–7486

    PubMed  CAS  Google Scholar 

  • GĂ¼ray T, Arinç E (1990) Purification of NADH-cytochrome b5 reductase from sheep lung and its electrophoretic, spectral and some other properties. Int J Biochem 22: 1029–1037

    Article  PubMed  Google Scholar 

  • GĂ¼ray T, Ann? E (1991) Kinetic properties of purified sheep lung microsomal NADH-cytochrome b5 reductase. Int J Biochem 23: 1315–1320

    Google Scholar 

  • Hackett CS, Strittmatter P (1984) Covalent cross linking of the active site of vesicles-bound cytochrome b5 and NADH-cytochrome b5 reductase. J Biol Chem 259: 3275–3282

    PubMed  CAS  Google Scholar 

  • Haniu M, Iyanagi T, Miller P, Lee TD, Shively JE (1986) Complete amino acid sequence of NADPH-cytochrome P-450 reductase from porcine hepatic microsomes. Biochemistry 25: 7906–7911

    Article  PubMed  CAS  Google Scholar 

  • Haniu M, McManus ME, Birkett DJ, Lee TD, Shively JE (1989) Structural and functional analysis of NADPH-cytochrome P-450 reductase from human liver: complete sequence of human enzyme and NADPH-binding sites. Biochemistry 28: 8639–8645

    Article  PubMed  CAS  Google Scholar 

  • HanukoÄŸlu I (1992) Reductases of the bacterial, mitochondrial and microsomal cytochrome P450 systems: Structural comparisons. In: Archakov AI, Bachmanova GI (eds) Cytochrome P450: biochemistry and biophysics. INCO-TNC, Moscow, pp 339–344

    Google Scholar 

  • HanukoÄŸlu I, Gutfinger T (1989) cDNA sequence of adrenodoxin reductase-identification of NADP-binding sites in oxidoreductases. Eur J Biochem 180: 479–484

    Google Scholar 

  • Hegesh E, Hegesh J, Kaftory A (1986) Congenital methemoglobinemia with a deficiency of cytochrome b5. N Eng J Med 314: 757–761

    Article  CAS  Google Scholar 

  • Holloway PW (1971) A requirement for three protein components in microsomal stearyl coenzyme A desaturation. Biochemistry 10: 1556–1560

    Article  PubMed  CAS  Google Scholar 

  • Holloway PW, Katz JT (1972) A requirement for cytochrome b5 in microsomal stearyl coenzyme A. Biochemistry 11: 3689–3695

    Article  PubMed  CAS  Google Scholar 

  • Hultquist DE, Passon PG (1971) Catalysis of methemoglobin reduction by erythrocyte cytochrome b5 and cytochrome b5 reductase. Nature 229: 252–254

    Article  CAS  Google Scholar 

  • Hultquist DE, Dean RT, Douglas RH (1974) Homogenous cytochrome b5 from human erythrocytes. Biochem Biophys Res Commun 60: 28–34

    Article  PubMed  CAS  Google Scholar 

  • Imai Y (1981) The roles of cytochrome b5 in reconstituted monooxygenase systems containing various forms of hepatic microsomal cytochrome P-450. J Biochem (Tokyo) 89: 351–362

    CAS  Google Scholar 

  • Ito A (1980) Cytochrome b5-like hemoprotein of outer mitochondrial membrane; OM cytochrome b. J Biochem (Tokyo) 87: 73–80

    CAS  Google Scholar 

  • Ito A, Hayashi S, Yoshida T (1981) Participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane ( OM cytochrome b) in NADH-semidehydroascorbic acid reductase activity of rat liver. Biochem Biophys Res Commun 101: 591–598

    Article  PubMed  CAS  Google Scholar 

  • IÅ›can MY, Arinç E (1986) Kinetic and structural properties of biocatalytically active sheep lung microsomal NADPH-cytochrome c reductase. Int J Biochem 18: 731–741

    Article  PubMed  Google Scholar 

  • IÅ›can MY, Arinç E (1988) Comparison of highly purified sheep liver and lung NADPH-cytochrome P-450 reductases by the analysis of kinetic and catalytic properties. Int J Biochem 20: 1189–1196

    Article  PubMed  Google Scholar 

  • Jansson I, Tamburini PP, Favreau LV, Schenkman JB (1985) The interaction of cytochrome b5 with four cytochrome P-450 enzymes from untreated rat. Drug Metab Dispos 13: 453–458

    PubMed  CAS  Google Scholar 

  • Jefcoate CR (1986) Cytochrome P-450 enzymes in sterol biosynthesis and metabolism. In: Ortiz de Montellano PR (ed) Cytochrome P450, structure, mechanism and biochemistry. Plenum, New York, pp 387–428

    Google Scholar 

  • Katagiri M, Murakami H, Yabusaki Y, Sugiyama T, Okamoto M, Yamano T, Ohkawa H (1986) Molecular cloning and sequence analysis of full length cDNA for rabbit liver NADPH-cytochrome P450 reductase mRNA. J Biochem (Tokyo) 100: 945––954

    CAS  Google Scholar 

  • Kimura S, Abe K, Sugita Y (1984) Differences between erythrocyte and liver cytochrome b5 isolated from pig and human. FEBS Letters 169: 143–146

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Rikans LE (1984) Kinetic properties of guinea-pig liver microsomal NADPH cytochrome P-450 reductase. Comp Biochem Physiol 77B: 313–318

    Article  CAS  Google Scholar 

  • Kozutsumi Y, Kawano T, Yamakawa T, Suzuki A (1990) Participation of cytochrome b5 in CMP-N-acetylneuraminic acid hydroxylation in mouse liver cytosol. J Biochem (Tokyo) 108: 704–706

    CAS  Google Scholar 

  • Kozutsumi Y, Kawano T, Kawasaki H, Suzuki K, Yamakawa T, Suzuki A (1991) Reconstitution of CMP-N-acetylneuraminic acid hydroxylation activity using mouse liver cytosol fraction and soluble cytochrome b5 purified horse erythrocytes. J Biochem (Tokyo) 110: 429–435

    CAS  Google Scholar 

  • Kulkoski JA, Weber JL, Ghazarian JG (1979) NADPH-cytochrome c reductase in outer membrane of kidney mitochondria. Arch Biochem Biophys 192: 539–547

    Article  PubMed  CAS  Google Scholar 

  • Kurzban GP, Strobel HW (1986) Preparation and characterization of FAD-dependent NADPH-cytochrome P-450 reductase. J Biol Chem 261: 7824–7830

    PubMed  CAS  Google Scholar 

  • Ladokhin AS, Wang L, Steggles AW, Holloway PW (1991) Flourescence study of a mutant cytochrome b5 with a single tryptophan in the membrane-binding domain. Biochemistry 30: 10200–10206

    Article  PubMed  CAS  Google Scholar 

  • Lederer F, Ghrir R, Guiard B, Cortial S, Ito A (1983) Two homologous cytochromes b5 in a single cell. Eur J Biochem 132: 95–102

    Article  PubMed  CAS  Google Scholar 

  • Lu AYH, Coon MJ (1968) Role of hemoprotein P-450 in fatty acid cohydroxylation in a soluble enzyme system from liver microsomes. J Biol Chem 243: 1331–1332

    PubMed  CAS  Google Scholar 

  • Masters BSS, Kamin H, Gibson QH, Williams CH (1965) Studies on the mechanism of microsomal triphosphopyridine nucleotide-cytochrome c reductase. J Biol Chem 240: 921–931

    PubMed  CAS  Google Scholar 

  • Mathews FS, Argos P, Levine P (1971) The structure of cytochrome b5 at 2.0 A resolution. Cold Spring Harbor Symp Quant Biol 36: 387–395

    CAS  Google Scholar 

  • Mathews FS, Czerwinski EW, Argos P (1979) The X-ray crystallographic structure of calf liver cytochrome b5. In: Dolphin D (ed) The porphyrins vol VII. Academic Press, New York, pp 107–147

    Google Scholar 

  • Mayer RT, Durrant JL (1979) Preparation of homogeneous NADPH cytochrome c (P-450) reductase from house flies using affinity chromatography techniques. J Biol Chem 254: 756–761

    PubMed  CAS  Google Scholar 

  • Miwa FT, Lu AYH (1984) The association of and NADPH-cytochrome P450 reductase in phospholipid membranes. Arch Biochem Biophys 234: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Morgan ET, Coon MJ (1984) Effects of cytochrome b5 on cytochrome P-450 catalyzed reactions. Drug Metab Dispos 12: 358–364

    PubMed  CAS  Google Scholar 

  • Nebert DW, Gonzalez FJ (1987) P450 genes: structure, evolution and regulation. Ann Rev Biochem 56: 945–993

    Article  PubMed  CAS  Google Scholar 

  • Oshino N (1980) Cytochrome b5 and its physiological significance. In Schenkman JB, Kupfer D (eds) Hepatic cytochrome P-450 monooxygenase system. Pergamon Press, New York, pp 407–447

    Google Scholar 

  • Oshino N, Imai Y, Sato R (1971) A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes. J Biochem (Tokyo) 69: 155–167

    CAS  Google Scholar 

  • Ozols J (1989) Structure of cytochrome b5 and its topology in the microsomal membrane. Biochim Biophys Acta 997: 121–130

    Article  PubMed  CAS  Google Scholar 

  • Ozols J, Heinemann FS (1982) Chemical structure of cytochrome b5. Isolation of peptides by high pressure liquid chromatography. Biochim Biophys Acta 704: 163–173

    Article  PubMed  CAS  Google Scholar 

  • Pasha RPK (1992) Effects of liver and lung cytochrome b5 on lung cytochrome P-450LgM2 catalyzed benzphetamine N-demethylase reactions. MSc Thesis, Middle East Technical University, Ankara, Turkey, pp 114

    Google Scholar 

  • Passon PG, Reed DW, Hultquist DE (1972) Soluble cytochrome b5 from human erythrocytes. Biochim Biophys Acta 275: 51–61

    Article  PubMed  CAS  Google Scholar 

  • Peterson JA, Prough RA (1986) Cytochrome P-450 reductase and cytochrome b5 in cytochrome P-450 catalysis. In: Ortiz de Montellano PR (ed) Cytochrome P450, structure, mechanism and biochemistry. Plenum, New York, pp 89–117

    Google Scholar 

  • Phillips AH, Langdon RG (1962) Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization and kinetic studies. J Biol Chem 237: 2652–2660

    PubMed  CAS  Google Scholar 

  • Porter TD (1991) An unusual yet strongly conserved flavoprotein reductase in bacterial and mammals. Trends Biochem Sci 16: 154–158

    Article  PubMed  CAS  Google Scholar 

  • Porter TD, Kasper CB (1985) Coding nucleotide sequence of rat NADPH-cytochrome P-450 oxidoreductase cDNA and identification of flavin-binding domains. Proc Natl Acad Sci USA 82: 973–977

    Article  PubMed  CAS  Google Scholar 

  • Porter TD, Kasper CB (1986) NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Biochemistry 25: 1682–1687

    Article  PubMed  CAS  Google Scholar 

  • Raw I, Mahler HR (1959) Studies on electron transfer enzymes. HI Cytochrome b5 of pig liver mitochondria. J Biol Chem 234: 1867–1873

    PubMed  CAS  Google Scholar 

  • Schenkman JB (1991) Cytochrome P450-dependent monooxygenase: An overview. In: Arinç E, Schenkman JB, Hodgson E (eds) Molecular aspects of monooxygenases and bioactivation of toxic compounds. Plenum Press, New York, pp 1–10

    Google Scholar 

  • Shen AL, Kasper CB (1993) Protein and gene structure and regulation of NADPH-cytochrome P450 oxidoreductase. In Schenkman JB, Greim H (eds) Cytochrome P450. Handbook of experimental pharmacology vol 105 Springer-Verlag, Heildelberg, pp 35–59

    Google Scholar 

  • Segel IH (1975) Enzyme kinetics. Wiley, New York, pp 826-829 Serabjit-Singh CJ, Wolf RJ, Philpot RM (1979) The rabbit pulmonary monooxygenase system. Immunological and biochemical characterization of enzyme components. J Biol Chem 254: 9901–9907

    Google Scholar 

  • Smith MA, Jonsson L, Stymne S, Stobart M (1992) Evidence for cytochrome b5 as an electron donor in ricinoleic acid biosynthesis in microsomal preparations from developing castor bean ( Ricinus communis L. ). Biochem J 287: 141–144

    PubMed  CAS  Google Scholar 

  • Strittmatter P (1960) The nature of heme binding in microsomal cytochrome b5. J Biol Chem 235: 2492–2497

    PubMed  CAS  Google Scholar 

  • Strittmatter P (1963) Microsomal cytochrome b5 and cytochrome b5 reductase. The Enzymes 8: 113–145

    CAS  Google Scholar 

  • Strittmatter CP, Ball EG (1952) A hemochromogen component of liver microsomes. Proc Natl Acad Sci USA 38: 19–25

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter P, Velick SF (1956) The isolation and properties of microsomal cytochrome. J Biol Chem 221: 253–264

    PubMed  CAS  Google Scholar 

  • Strittmatter P, Dailey HA (1982) Essential structural features and orientation of cytochrome b5. In: Mortonosi N (ed) Membranes and transport, vol 1. Plenium Press, New York, pp 71–82

    Google Scholar 

  • Strobel HW, Lu AYH, Heidema J, Coon MJ (1970) Phoshatidylcholine requirement in the enzymatic reduction of hemoprotein P-450 and in fatty acid, hydrocarbon, and drug hydroxylation. J Biol Chem 245: 4851–4854

    PubMed  CAS  Google Scholar 

  • Strobel HW, Shen S, Nadler SG (1992) Electrostatic components in cytochrome P450 reductase: Cytochrome P450 interaction. In: Archakov AI, Bachmanova GI (eds) Cytochrome P450: biochemistry and biophysics. INCO-TNC, Moscow, pp 254–259

    Google Scholar 

  • Takematsu H, Kozutsumi Y, Suzuki A, Kawasaki T (1992) Molecular cloning of rabbit cytochrome b5 genes: Evidence for the occurrence of two separate genes encoding the soluble and microsomal forms. Biochem Biophys Res Commun 185: 845–851

    Article  CAS  Google Scholar 

  • Urenjak J, Linder D, Lumper L (1987) Structural comparison between the trout and mammalian hydrophilic domain of NADPH-cytochrome P-450 reductase. J Chromatogr 397: 123–136

    Article  PubMed  CAS  Google Scholar 

  • Vermillion JL, Coon MJ (1978) Identification of the high and low potential flavins of liver microsomal NADPH-cytochrome P-450 reductase. J Biol Chem 253: 8812–8819

    Google Scholar 

  • Vogel F, Lumper L (1986) Complete structure of the hydrophobic domain in the porcine NADPH-cytochrome P-450 reductase. Biochem J 236: 871–878

    PubMed  CAS  Google Scholar 

  • von Heijne G (1985) Structure and thermodynamic aspects of the transfer of proteins into and across membranes. Curr Top Membr Trans 24: 151

    Google Scholar 

  • Yamano S, Aoyama T, McBride OW, Hardwick JP, Gelboin HV, Gonzalez FJ (1989) Human NADPH-P450 oxidoreductase: complementary DNA cloning, sequence and vaccinia virus-mediated expression and localization of the CYPOR gene to chromosome 7. Mol Pharmacol 36: 83–88

    PubMed  CAS  Google Scholar 

  • Yasukochi Y, Okita RT, Masters BSS (1980) Comparison of properties of detergent solubilized NADPH-cytochrome P-450 reductases from pig liver and kidney: Immunological, kinetic and reconstitutive properties. Arch Biochem Biophys 202: 491–498

    Article  PubMed  CAS  Google Scholar 

  • Voznesensky AI, Schenkman JB (1992) The cytochrome P450 2B4-NADPH cytochrome P450 reductase complex is not formed by charge-pairing. J Biol Chem 267: 14669–14676

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arinç, E. (1995). General Aspects of NADPH Cytochrome P450 Reductase and Cytochrome b5. In: Arinç, E., Schenkman, J.B., Hodgson, E. (eds) Molecular Aspects of Oxidative Drug Metabolizing Enzymes. NATO ASI Series, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79528-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79528-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79530-5

  • Online ISBN: 978-3-642-79528-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics