Skip to main content

Cellular Biology of Tubulointerstitial Growth

  • Chapter
  • 95 Accesses

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 88))

Abstract

The capacity of the kidney to grow has been known for more than 2000 years. Aristotle (384–322 B.C.) was probably the first to describe that animals born with one kidney can develop normally, and that the single kidney is enlarged compared with the kidneys of normal two-kidney control animals (WOLF 1993). In the early nineteenth century, the French physician Pierre-Francois-Olivier Rayer (1793–1867) reported enlargement of the renal cortex in diabetes mellitus and observed that the size of the remnant kidney in patients in whom one kidney is missing approaches that of the two kidneys of healthy individuals (RAYER 1837). Rayer also undertook microscopic studies and found that “if the kidney is partially disorganized, the healthy parts become hypertrophied, resulting in a curious mixture of atrophic and hypertrophic parts” (RItz et al. 1989). Gustav Simon (1824–1876), a professor of surgery at the University of Heidelberg in Germany, performed the first unilateral nephrectomy in human subjects. The question of whether compensatory renal growth is solely an increase in protein and size (hypertrophy) or rather is caused by proliferation has puzzled students of renal growth for a long time. The famous Viennese pathologist Carl Rokitansky (1804–1878) believed that the increase in renal size after nephrectomy is true hypertrophy of all tissue constituents, whereas Simon thought that an increase in cell number was responsible for compensatory renal growth (WOlf 1993). However, most of these confusing early opinions can be attributed to the different ages of the animals used and the degree of renal ablation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PD, Parker PJ (1992) Activation of mitogen-activated protein ( MAP) kinase by a MAP kinase-kinase. J Biol Chem 267: 13135–13137

    Google Scholar 

  • Almendral JM, Sommer D, McDonald–Bravo H, Burckhardt J, Perera J, Bravo R (1988) Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol Cell Biol 8: 2140–2148

    CAS  Google Scholar 

  • Angel P, Hattori K, Smeal T, Karin M (1988) The jun proto–oncogene is positively autoregulated by its product, junlAF-1. Cell 55: 875–885

    PubMed  CAS  Google Scholar 

  • Arion D, Meijer L, Brizuela L, Beach D (1988) Cdc2 is a component of the M–phase–specific histone HI kinase: evidence for identity with MPF. Cell 55: 371–378

    PubMed  CAS  Google Scholar 

  • Asselin A, Nepveu A, Marcu KB (1989) Molecular requirements for transcriptional initiation of the murine c-myc gene. Oncogene 4: 549–558

    PubMed  CAS  Google Scholar 

  • Asselin C, Marcu KB (1989) Mode of c-myc gene regulation in folic acid–induced kidney regeneration. Oncogene Res 5: 67–72

    PubMed  CAS  Google Scholar 

  • Averbukh A, Berman S, Weissgarten J, Cohn M, Golik A, Cohen N, Modai D (1992) Postnephrectomy mesangial cells secrete a factor(s) that stimulate(s) tubular cell growth in vitro. Nephron 60: 216–219

    PubMed  CAS  Google Scholar 

  • Baichwald VR, Tjian R (1990) Control of c-jun activity by interaction of a cell–specific inhibitor with regulatory domain d: differences between v- and c-jun. Cell 63: 815–825

    Google Scholar 

  • Baichwald VR, Park A, Tjian R (1991) V-src and EJ ras alleviate repression of c-jun by cell-specific inhibitor. Nature 352: 165–168

    Google Scholar 

  • Bailey A, Sanchez JD, Rigsby D, Roesel J, Alvarez R, Rodu B, Miller DM (1990) Stimulation of renal and hepatic c-myc and c-Ha.-ras expression by unilateral nephrectomy. Oncogene Res 5: 287–293

    PubMed  CAS  Google Scholar 

  • Bandara LR, Adamczewski JP, Hunt T, La Thangue NB (1991) Cyclin A and the retinoblastoma gene product complex with a common transcription factor. Nature 352: 249–251

    PubMed  CAS  Google Scholar 

  • Banfic H (1990) Inositol lipid signaling during initiation of compensatory renal growth. Nephron 55: 237–241

    PubMed  CAS  Google Scholar 

  • Banfic H, Kukolja S (1988) Plasma from uninephrectomized rats stimulates production of inositol triphosphates and inositol tetrakiphosphate in renal cortical slides. Biochem J 255: 671–676

    PubMed  CAS  Google Scholar 

  • Bickmore WA, Oghene K, Little MH, Seawright A, van Heyningen V, Hastie ND (1992) Modulation of DNA–binding specificity by alternative splicing of the Wilms tumor wtl gene transcript. Science 257: 235–237

    PubMed  CAS  Google Scholar 

  • Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52: 301–354

    PubMed  CAS  Google Scholar 

  • Bissonnette RP, Echeverri F, Mahboubi A, Green DR (1992) Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359: 552–556

    PubMed  CAS  Google Scholar 

  • Blackwood EM, Eisenman RN (1991) Max: a helix–loop–helix zipper protein that forms a sequencespecific DNA-binding complex with myc. Science 251: 1211–1217

    PubMed  CAS  Google Scholar 

  • Blazer-Yost B, Watanabe M, Haverty TP, Ziyadeh FN (1992) Role of insulin and IGF 1 receptors in proliferation of cultured renal proximal tubule cells. Biochim Biophys Acta 1133: 329–335

    PubMed  CAS  Google Scholar 

  • Boettinger D (1989) Interaction of oncogenes with differentiation programs. In: Vogt PK (ed) Oncogenes. Selected reviews. Springer, Berlin Heidelberg New York, pp 31–78 (Current topics in microbiology and immunology, vol 147 )

    Google Scholar 

  • Bonventre JV, Sukhatme VP, Bamberger M, Ouellette AJ, Brown D (1991) Localization of the protein product of the immediate early growth response gene, Egr–1, in the kidney after ischemia and reperfusion. Cell Reg 2: 251–260

    CAS  Google Scholar 

  • Boylan MO, Zarbl H (1991) Transformation effector and suppressor genes. J Cell Biochem 46: 199–205

    PubMed  CAS  Google Scholar 

  • Brenner BM (1985) Nephron adaptation to renal injury or ablation. Am J Physiol 249: F324–F337

    PubMed  CAS  Google Scholar 

  • Breyer MD, Redha R, Breyer J A (1991) Segmental distribution of epidermal growth factor binding sites in rabbit nephron. Am J Physiol 259: F553–F558

    Google Scholar 

  • Broek D, Bartlett R, Crawford K, Nurse P (1991) Involvement of p34cdc2 in establishing the dependency of S–phase on mitosis. Nature 349: 388–393

    PubMed  CAS  Google Scholar 

  • Buchkovich K, Duffy LA, Harlow E (1989) The retinoblastoma protein is phoyphorylated during specific phases of the cell cycle. Cell 58: 1097–1105

    PubMed  CAS  Google Scholar 

  • Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S (1991) Oncogenes and signal transduction. Cell 64: 281–302

    PubMed  CAS  Google Scholar 

  • Celano P, Berchtold CM, Kizer DL, Weeraratna A, Nelkin BD, Baylin SB, Casero RA (1992) Characterization of an endogeneous RNA transcript with homology to the antisense strand of the human c-myc gene. J Biol Chem 267: 15092–15096

    PubMed  CAS  Google Scholar 

  • Cisek LJ, Corden JL (1989) Phosphorylation of RNA polymerase by the murine homologue of the cell–cycle control protein cdc2. Nature 339: 679–684

    PubMed  CAS  Google Scholar 

  • Chavrier P, Lemaire P, Revelant O, Bravo R, Charnay P (1988) Characterization of a mouse multigene family that encodes zinc-finger structures. Mol Cell Biol 8: 1319–1326

    PubMed  CAS  Google Scholar 

  • Chiu IM, Reddy EP, Givol D, Robbins KC, Tronick SR, Aaronson SA (1984) Nucleotide sequence analysis identifies the human c-sis proto–oncogene as a structural gene for platelet–derived growth factor. Cell 37: 123–129

    PubMed  CAS  Google Scholar 

  • Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M (1988) The c-fos protein interacts with ojWAP–1 to stimulate transcription of AP–1 responsive genes. Cell 54: 541–552

    PubMed  CAS  Google Scholar 

  • Chou YH, Bischoff JR, Beach D, Goldman RD (1990) Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin. Cell 62: 1063–1071

    PubMed  CAS  Google Scholar 

  • Clarke PR, Karsenti E (1991) Regulation of p34cdc2 protein kinase: new insights into protein phosphorylation and the cell cycle. J Cell Sci 100: 409–414

    PubMed  CAS  Google Scholar 

  • Clearly ML, Smith SD, Sklar J (1986) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid 6c7–2/immunoglobulin transcript resulting from the t(14; 18) translocation. Cell 47: 19–28

    Google Scholar 

  • Coccia EM, Cicala C, Charlesworth A, Ciccarelli C, Ross GB, Philipson L, Sorrentino V (1992) Regulation and expression of a growth–arrest–specific gene (gas5) during growth, differentiation, and development. Mol Cell Biol 12: 3514–3521

    PubMed  CAS  Google Scholar 

  • Cole MD (1991) Myc meets its max. Cell 65: 715–716

    PubMed  CAS  Google Scholar 

  • Conover CA, Liu F, Powell D, Rosenfeld RG, Hintz RL (1989) Insulin–like growth factor binding proteins from cultured human fibroblasts. Characterization and hormonal regulation. J Clin Invest 83: 852–859

    Google Scholar 

  • Cowley BD, Chadwick LJ, Grantham JJ, Calvet JP (1989) Sequential proto–oncogene expression in regenerating kidney following acute renal injury. J Biol Chem 264: 8389–8393

    PubMed  CAS  Google Scholar 

  • Cowley BD, Chadwick LJ, Grantham JJ, Calvet JP (1991) Elevated proto–oncogene expression in polycystic kidneys of the C57/6J (cpk) mouse. J Am Soc Nephrol 1: 1048–1053

    PubMed  Google Scholar 

  • Cross F, Roberts J, Weintraub H (1989) Simple and complex cell cycles. Annu Rev Cell Biol 5: 341–395

    PubMed  CAS  Google Scholar 

  • Culpepper RM, Schoolwerth AC (1992) Remnant kidney oxygen consumption: hypermetabolism or hyperbole. J Am Soc Nephrol 3: 151–156

    Google Scholar 

  • Cyert MS, Thorner J (1989) Putting it on and taking it off: phosphoprotein phosphatase involvement in cell cycle regulation. Cell 57: 891–893

    PubMed  CAS  Google Scholar 

  • Daughaday WH, Rotwein P (1989) Insulin–like growth factors I and II. peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev 10: 68–91

    PubMed  CAS  Google Scholar 

  • DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffn J, Piwnica-Worms H, Huang CM, Livingstone DM (1989) The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58: 1085–1095

    PubMed  CAS  Google Scholar 

  • Del Sal G, Ruaro ME, Philipson L, Schneider C (1992) The growth-arrest-specific gene, gasl, is involved in growth suppression. Cell 70: 595–607

    PubMed  Google Scholar 

  • Devoto SH, Mudryj M, Pines J, Hunter T, Nevins JR (1992) A cyclin a-protein kinase complex possesses sequence-specific DNA binding activity: p33cdk2 is a component of the E2F-cyclin A complex. Cell 68: 167–176

    PubMed  CAS  Google Scholar 

  • Domin J, Rozengurt E (1992) Heterologous densensitization of platelet-derived growth factormediated arachidonic release and prostaglandin synthesis. J Biol Chem 267: 15217–15223

    PubMed  CAS  Google Scholar 

  • Dou QP, Markell PJ, Pardee AB (1992) Thymidine kinase transcription is regulated at G1/S phase by a complex that contains retinoblastoma-like protein and a cdc2 kinase. Proc Natl Acad Sci USA 89: 3256–3260

    PubMed  CAS  Google Scholar 

  • Draetta G, Luca F, Westendorf J, Brizuele L, Ruderman J, Beach D (1989) Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell 56: 829–838

    PubMed  CAS  Google Scholar 

  • Ellis RE, Yuan J, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7: 663–698

    PubMed  CAS  Google Scholar 

  • El Nahas AM, Le Carpentier JE, Bassett AH (1990) Compensatory renal growth: role of growth hormone and insulin-like growth factor-1. Neprol Dial Transplant 5: 123–129

    Google Scholar 

  • Evan GL, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128

    PubMed  CAS  Google Scholar 

  • Fagin J A, Melmed S (1987) Relative increase in insulin–like growth factor I messenger ribonucleic acid levels in compensatory renal hypertrophy. Endocrinology 120: 718–724

    PubMed  CAS  Google Scholar 

  • Fesus L, Davies PJA, Piacentini M (1991) Apoptosis: molecular mechanisms in programmed cell death. Eur J Cell Biol 56: 170–177

    PubMed  CAS  Google Scholar 

  • Fine L, Holley RW, Nasri H, Badie–Dezfooly (1985) BSC-1 growth inhibitor transforms a mitogenic stimulus into a hypertrophic stimulus for renal proximal tubular cells: relationship to Na+/H + antiport activity. Proc Natl Acad Sci USA 82: 6163–6166

    CAS  Google Scholar 

  • Fine L (1986) The biology of renal hypertrophy. Kidney Int 29: 619–634

    PubMed  CAS  Google Scholar 

  • Flyvberg A, Frystyk J, Marshall SM (1990) Additive increase in kidney insulin–like growth factor I and initial renal enlargement in uninephrectomized diabetic rats. Horm Metab Res 22: 516–520

    Google Scholar 

  • Flyvberg A, Marshall SM, Frystyk J, Rasch R, Bornfeldt KE, Arnquist H, Jensen PK, Pallesen PK, Pallesen G, Orskov H (1992) Insulin-like growth factor I in initial renal hypertrophy in potassiumdepleted rats. Am J Physiol 262: F1032–F1031

    Google Scholar 

  • Franza BR, Rauscher III FJ, Josephs SF, Curran T (1988) The fos complex and fos-related antigens recognize sequence elements that contain AP-1 binding sites. Science 238: 1150–1153

    Google Scholar 

  • Freeman RS, Donoghue DJ (1991) Protein kinases and proto–oncogenes: biochemical regulators of the eukaryotic cell cycle. Biochemistry 30: 2293–2302

    PubMed  CAS  Google Scholar 

  • Galaktionov K, Beach D (1991) Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67: 1181–1194

    PubMed  CAS  Google Scholar 

  • Gautier J, Norbury C, Lohka M, Nurse P, Mailer J (1988) Purified maturation–promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 54: 433–439

    PubMed  CAS  Google Scholar 

  • Gautier J, Matsukawa T, Nurse P, Maller J (1989) Dephosphorylation and activation of Xenopus p34cdc2 protein kinase during the cell cycle. Nature 339: 626–629

    PubMed  CAS  Google Scholar 

  • Gentz R, Rauscher III FJ, Abate C, Curran T (1989) Parallel association of fos and jun leucine zippers juxtaposes DNA binding domains. Science 243: 1695–1699

    PubMed  CAS  Google Scholar 

  • Gibbons GH, Pratt RE, Dzau VJ (1992) Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-ß expresssion determines growth response to angiotensin II. J Clin Invest 90; 456–461

    Google Scholar 

  • Gilman MZ, Wilson RN, Weinberg RA (1986) Multiple protein–binding sites in the 5–flanking region regulate c-fos expression. Mol Cell Biol 6: 4305–4316

    PubMed  CAS  Google Scholar 

  • Gille H, Sharrocks AD, Shaw PE (1992) Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358: 414–417

    Google Scholar 

  • Girard F, Strausfeld U, Fernandez A, Lamb NJC (1991) Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67: 1169–1179

    PubMed  CAS  Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway, nature 349: 132–139

    CAS  Google Scholar 

  • Gobe GC, Axelsen RA (1987) Genesis of renal tubular atrophy in experimental hydronephrosis in the rat. Role of apoptosis. Lab Invest 56: 273–281

    Google Scholar 

  • Gobe GC, Axelsen RA, Searle JW (1990) Cellular events in experimental unilateral ischemic renal atrophy and in regeneration after contralateral nephrectomy. Lab Invest 63: 770–779

    PubMed  CAS  Google Scholar 

  • Goodyer PR, Kachera Z, Bell C, Rozen R (1988) Renal tubular cells are potential targets of epidermal growth factor. Am J Physiol 255: F1191–F1196

    Google Scholar 

  • Golchini K, Norman J, Bohman R, Kurtz I (1989) Induction of hypertrophy in cultured proximal tubule cells by extracellular NH4CI. J Clin invest 84: 1767–1779

    PubMed  CAS  Google Scholar 

  • Gould KL, Nurse P (1989) Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342: 39–44

    PubMed  CAS  Google Scholar 

  • Graziani A, Gramaglia D, Cantley LC, Comoglio (1991) The tyrosine–phosphorylated hepatocyte growth factors/scatter factor receptor associates with phosphatidylinositol 3-kinase. J Biol Chem 266: 22087–22090

    CAS  Google Scholar 

  • Haber DA, Sohn RL, Buckler A J, Pelletier J, Call Km, Housman DE (1991) Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sei USA 88: 9618–9622

    Google Scholar 

  • Hammerman MR, Rogers S (1987) Distribution of IGF receptors in the plasma membrane of proximal tubular cells. Am J Physiol 253: F841–F847

    PubMed  CAS  Google Scholar 

  • Harding MA, Gattone II VH, Grantham JJ, Calvet JP (1992) Localization of overexpressed c-myc mRNA in polycystic kidneys of the cpk mouse. Kidney Int 41: 317–325

    PubMed  CAS  Google Scholar 

  • Harris H, Miller OJ, Klein G, Worst P, Tacibana T (1969) Suppression of malignancy by cell fusion. Nature 223: 363–368

    PubMed  CAS  Google Scholar 

  • Harris RH, Hise MK, Best CF (1983) Renotropic factors in urine. Kidney Int 23: 616–623

    PubMed  CAS  Google Scholar 

  • Haverty TP, Kelly CJ, Hines WH, Amenta PS, Watanabe M, Harper RA, Kefalides NA, Neilson EG (1988) Characterization of a renal tubular epithelial cell line which secretes the autologous target antigen of autoimmune experimental interstitial nephritis. J Cell Biol 107: 1359–1368

    PubMed  CAS  Google Scholar 

  • Herschman HR (1991) Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 60: 281–319

    PubMed  CAS  Google Scholar 

  • Hipskind RA, Nordheim A (1991) In vitro transcriptional analysis of the human c-fos protooncogene. J Biol Chem 266: 19572–19582

    PubMed  CAS  Google Scholar 

  • Hofbauer R, Denhardt DT (1991) Cell cycle–regulated and proliferation stimulus-responsive genes. Crit Rev Eukaryotic Gene Exp 1: 247–300

    CAS  Google Scholar 

  • Holley RW, Böhlen P, Fava R, Baldwin JH, Kleeman G, Armour R (1980) Purification of kidney epithelial cell growth inhibitors. Proc Natl Acad Sei USA 77: 5989–5992

    CAS  Google Scholar 

  • Humes HD, Cieslinski DA, Coimbra TM, Messana JM, Galvao C (1989) Epidermal growth factor enhances tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J Clin Invest 84: 1757–1761

    PubMed  CAS  Google Scholar 

  • Humes HD, Beals TF, Cieslinski DA, Sanchez IO, Page TP (1991) Effects of transforming growth factor–b, transforming growth factor–a, and other growth factors on renal proximal tubule cells. Lab Invest 64: 538–545

    PubMed  CAS  Google Scholar 

  • Igawa T, Kanda S, Kanetake H, Saitoh Y, Ichihara A, Tomita Y, Nakamura T (1991) Hepatocyte growth factor is a potent mitogen for cultured rabbit renal tubular epithelial cells. Biochem Biophys Res Commun 174: 831–838

    PubMed  CAS  Google Scholar 

  • Iguchi–Ariga SM, Okazaki T, Itani T, Ogata M, Sato Y, Ariga H (1988) An initiation site of DNA replication with transcriptional enhancer activity present upstream of the c-myc gene. EMBO J7: 3135–3142

    CAS  Google Scholar 

  • Irvine RF (1991) Inositol tetrakisphosphate as a second messenger: confusions, contradictions, and a potential resolution. Bioessays 13: 419–428

    PubMed  CAS  Google Scholar 

  • Irvine RF (1992) Inositol phosphates and Ca2+ entry: toward a proliferation or simplification. FASEB J 6: 3085–3091

    CAS  Google Scholar 

  • Ishibashi K, Sasaki S, Sakamoto H, Nakamura Y, Hata T, Nakamura T, Marumo F (1992) Hepatocyte growth factor is a paracrine factor for renal epithelial cells: stimulation of DNA synthesis and Na, K-ATPase activity. Biochem Biophys Res Commun 182: 960–965

    Google Scholar 

  • Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima SI, Sameshima, Hase A, Seto Y, Nagata S (1991) The polypeptide encoded by the cDNA for human cell surface antigen fas can mediate apoptosis. Cell 66: 233–243

    Google Scholar 

  • Kakkis E, Riggs KJ, Gillespie W, Calame K (1989) A transcriptional repressor of c-myc. Nature 339: 718–721

    PubMed  CAS  Google Scholar 

  • Kanetake H, Yamamoto N (1981) Studies on the mechanisms of compensatory renal hypertrophy and hyperplasia in a nephrectomized animal model. I. Evidence for a renotropic growthstimulating factor in uninephrectomized rabbit sera using tissue culture. J Urol 18: 326–330

    Google Scholar 

  • Karin M (1992) Signal transduction from cell surface to nucleus in development and disease. FASEB J 6: 2581–2590

    PubMed  CAS  Google Scholar 

  • Kartha S, Sukhatme YS, Toback FG (1987) ADP activates proto–oncogene expression in renal epithelial cells. Am J Physiol 252: F1175–F1179

    PubMed  CAS  Google Scholar 

  • Kato GJ, Dang CV (1992) Function of the c-myc oncoprotein. FASEB J 6: 3065–3072

    PubMed  CAS  Google Scholar 

  • Kim SJ, Wagner S, Liu F, O’Reilly MA, Robbins PD, Green MR (1992) Retinoblastoma gene product activates expression of the human TGF-p2 gene through transcription factor ATF 2. Nature 358: 331–333

    Google Scholar 

  • Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, Nishimoto T, Morgan DO, Franza BR, Roberts JM (1992) Formation and activation of a cylin E-cdk2 complex during the Gx phase of the human cell cycle. Science 247: 1689–1694

    Google Scholar 

  • Kujubu DA, Fine LG (1989) Physiology and cell biology update: polypeptide growth factors and their relation to renal disease. Am J Kidney Dis 14: 61–73

    PubMed  CAS  Google Scholar 

  • Kujubu DA; Norman JT, Herschman HR, Fine LG (1991) Primary response gene expression in renal hypertrophy and hyperplasia: evidence for different growth initiation processes. Am J Physiol 260: F823–F827

    PubMed  CAS  Google Scholar 

  • Kuncio GS, Neilson EG, Haverty T (1991) Mechanisms of tubulointerstitial fibrosis. Kidney Int 39: 550–556

    PubMed  CAS  Google Scholar 

  • Laiho M, DeCapiro JA, Ludlow JW, Livingston DM, Massague J (1990) Growth inhibition by TGF-ß linked to suppression of retinoblastoma protein phosphorylation. Cell 62: 175–182

    PubMed  CAS  Google Scholar 

  • Lajara R, Rotwein P, Bortz JD, Hansen VA, Sadow JL, Betts CR, Rogers SA, Hammerman MR (1989) Dual regulation of insulin-like growth factor I expression during renal hypertrophy. Am J Physiol 257: F252–F261

    PubMed  CAS  Google Scholar 

  • Lakshmanarao SS, Toole-Smith WE, Fattaey HK, Leach RJ, Johnson TC (1991) Identification of a cell surface component of Swiss 3T3 cells associated with an inhibition of cell division. Exp Cell Res 195: 412–415

    PubMed  CAS  Google Scholar 

  • Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EYH (1987a) Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235: 1394–1399

    PubMed  CAS  Google Scholar 

  • Lee WH, Shew JY, Hong FD, Sery TW, Donoso LA, Young LJ, Bookstein R, Lee EYH (1987b) The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 329: 642–645

    PubMed  CAS  Google Scholar 

  • Lemley KV, Kriz W (1991) Anatomy of the renal interstitium. Kidney Int 39: 370–381

    PubMed  CAS  Google Scholar 

  • Levine AJ, Momand J, Finlay CA (1991) The p53 tumor suppressor gene. Nature 351: 453–455

    PubMed  CAS  Google Scholar 

  • Lewin B (1990) Driving the cell cycle: M–phase kinase, its partners, and substrates. Cell 61: 743–752

    PubMed  CAS  Google Scholar 

  • Lieske JC, Walsh–Reitz MW, Toback FG (1992) Calcium oxalate monohydrate crystals are endocytosed by renal epithelial cells and induce proliferation. Am J Physiol 262: F622–F630

    PubMed  CAS  Google Scholar 

  • Lin BTY, Gruenwald S, Morla AO, Lee WH, Wang JYJ (1991) Retinoblastoma cancer–suppressor gene product is a substrate of the cell cycle regulator cdc2 kinase. EMBO J 10: 857–864

    PubMed  CAS  Google Scholar 

  • Logan JL, Benson B (1990) Serum renotropic factor stimulates prostaglandin synthesis in primary cultures of rabbit kidney cells. Prostaglandins Leukot Essent Fatty Acids 41: 183–186

    PubMed  CAS  Google Scholar 

  • Logan JL, Benson B (1992) Studies on serum renotropic activity after uninephrectomy in rabbits. Nephron 60: 466–470

    PubMed  CAS  Google Scholar 

  • Lowndes NF, Mclnerny CJ, Johnson AL, Fantes PA, Johnston LH (1992) Control of DNA synthesis genes in fission yeast by the cell-cycle gene cdc10+. Nature 355: 449–453

    PubMed  CAS  Google Scholar 

  • Lüscher B, Eisenman RN (1990) New light on myc and myb. Part I. Myc. Genes Dev 4: 2025–2035

    Google Scholar 

  • Macara IG (1989) Oncogenes and cellular signal transduction. Physiol Rev 69: 797–820

    PubMed  CAS  Google Scholar 

  • Madden SL, Cook DM, Morris JF, Gashler A, Sukhatme VP, Rauscher FJ III (1991) Transcriptional repression mediated by the WT1 Wilms tumor gene product. Science 253: 1550–1553

    PubMed  CAS  Google Scholar 

  • Malt R (1983) Humoral factors in regulation of compensatory renal hypertrophy. Kidney Int 23: 611–615

    PubMed  CAS  Google Scholar 

  • Mailer JL (1990) Xenopus oocytes and the biochemistry of cell division. Biochemistry 29: 3157–3166

    Google Scholar 

  • Manfioletti G, Ruaro ME, Del Sal G, Philipson L, Schneider C (1990) A growth–arrest–specific (gas) gene codes for a membrane protein. Mol Cell Biol 10: 2924–2930

    PubMed  CAS  Google Scholar 

  • Manzano F, Esbrit P, Garcia-Ocana A, Garcia-Canero R, Jimenez-Clavero MA (1989) Partial purification and characterisation of a renal growth factor from plasma of uninephreetomized rats. Nephrol Dial Transplant 4: 334–338

    PubMed  CAS  Google Scholar 

  • Margolis B (1992) Proteins with SH2 domains: transducers in the tyrosine kinase signaling pathway. Cell Growth Differ 3: 73–80

    PubMed  CAS  Google Scholar 

  • Marshall CJ (1991) Tumor–suppressor genes. Cell 64: 313–326

    PubMed  CAS  Google Scholar 

  • Marshall SM, Flyvbjerg A, Frkiaer J, Orskov H (1991) Insulin-like growth factor I and renal growth following ureteral obstruction in the rat. Nephron 58: 219–224

    PubMed  CAS  Google Scholar 

  • Mcintosh JR, Koonce MP (1989) Mitosis. Science 246: 622–628

    CAS  Google Scholar 

  • Mercer WE, Shields MT, Lin D, Appella E, Ullrich SJ (1991) Growth suppression induced by wild-type p53 protein is accompanied by selective down–regulation of proliferating-cell nuclear antigen expression. Proc Natl Acad Sci USA 88: 1958–1962

    PubMed  CAS  Google Scholar 

  • Milanes CI, Pernalete N, Starosta R, Perez-Gonzalez M, Paz-Martinez V, Bellorin-Font E (1989) Altered response of adenylate cyclase to parathyroid hormone during compensatory renal growth. Kidney Int 26: 802–809

    Google Scholar 

  • Milburn MV, Tong L, DeVos A, Briinger A, Yamaizumi Z, Nishimura S, Kim SH (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of proto-oncogenic ras proteins. Science 247: 939–945

    PubMed  CAS  Google Scholar 

  • Miller RT (1991) Transmembrane signalling through G proteins. Kidneys Int 39: 421–429

    CAS  Google Scholar 

  • Miller SB, Rogers SA, Estes CE, Hammerman MR (1992) Increased distal nephron EGF content and altered distribution of peptide in compensatory renal hypertrophy. Am J Physiol 262: F1032–F1038

    Google Scholar 

  • Mittnacht S, Weinberg RA (1991) GS phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. Cell 65: 381–393

    Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245

    PubMed  CAS  Google Scholar 

  • Moria AO, Draetta G, Beach D, Wang JYJ (1989) Reversible tyrosine phosphorylation of cdc2: dephosphorylation accompanies activation during entry into mitosis. Cell 58: 193–203

    Google Scholar 

  • Moses HL, Yang EY, Pletenpol JA (1990) TGF-p stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63: 245–247

    PubMed  CAS  Google Scholar 

  • Muller WJ, Lee FS, Dickson C, Peters G, Pattengale P, Leder P (1990) The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J 9: 907–913

    PubMed  CAS  Google Scholar 

  • Mulroney SE, Haramati A, Roberts CT, LeRoith D (1991) Renal IGF-I mRNA levels are enhanced following unilateral nephrecomy in immature but not adult rats. Endocrinology 128: 2660–2662

    PubMed  CAS  Google Scholar 

  • Mulroney SE, Haramati A, Werner H, Bondy C, Roberts CT, LeRoith D (1992a) Altered expression of insulin-like growth factor-I ( IGF-I) and IGF receptor genes after unilateral nephrectomy in immature rats. Endocrinology 130: 249–256

    Google Scholar 

  • Mulroney SE, Lumpkin MD, Roberts CT, LeRoith D, Haramati A (1992b) Effect of a growth hormone-releasing factor antagonist on compensatory renal growth, insulin-like growth factor-I ( IGF-I), and IGF-I receptor gene expression after unilateral nephrectomy in immature rats. Endocrinology 130: 2697–2702

    Google Scholar 

  • Murray AW (1989) The cell cycle as a cdc2 cycle. Nature 342: 14–15

    PubMed  CAS  Google Scholar 

  • Nagaike M, Hirao S, Tajima H, Noji S, Taniguchi S, Matsumoto K, Nakamura T (1991) Renotropic functions of hepatocyte growth factor in renal regeneration after unilateral nephrectomy. J Biol Chem 266: 22781–22784

    PubMed  CAS  Google Scholar 

  • Nakabeppu Y, Nathans D (1989) The basic region o ffos mediates specific DNA binding. EMBO J 8: 3833–3841

    PubMed  CAS  Google Scholar 

  • Nakamura H, Nemenoff RA, Gronich JH, Bon ventre JV (1991) Subcellular characteristics of phospholipase A2 activity in the rat kidney. Enhanced cytosolic, mitochondrial, and microsomal phospholipase A2 enzymatic activity after renal ischemia and reperfusion. J Clin Invest 87: 1810–1818

    PubMed  CAS  Google Scholar 

  • Nakamura T, Ebihara I, Tomino Y, Koide H, Kikuchi K, Koiso K (1992) Gene expression of growth-related proteins and ECM constituents in response to unilateral nephrectomy. Am J Physiol 262: F389–F396

    PubMed  CAS  Google Scholar 

  • Nath KA, Hostetter MK, Hostetter TH (1985) Pathophysiology of chronic tubule-interstitial disease in rats. Interactions of dietary acid load, ammonia and complement C3. J Clin Invest 76: 667–675

    PubMed  CAS  Google Scholar 

  • Nath KA (1992) Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 20: 1–17

    PubMed  CAS  Google Scholar 

  • Neilson EG (1989) Pathogenesis and therapy of interstitial nephritis. Kidney Int 35: 1257–1270

    PubMed  CAS  Google Scholar 

  • Nepveu A, Levine RA, Campisi J, Greenberg ME, Ziff EB, Marcu KB (1987) Alternative modes of c-myc regulation in growth factor–stimulated and differentiating cells. Oncogene 1: 243–250

    PubMed  CAS  Google Scholar 

  • Nomata K, Igarashi H, Kanetake H, Miyamoto T, Saito Y (1990) Expression of ras gene family result of compensatory renal growth in mice. Urol Res 18: 251–254

    PubMed  CAS  Google Scholar 

  • Norman JT, Bohman RE, Fischmann G, Bowen JW, McDonough A, Slamon D, Fine LG (1988) Patterns of mRNA expression during early cell growth differ in kidney epithelial cells destined to undergo compensatory hypertrophy versus regenerative hyperplasia. Proc Natl Acad Sci USA 85: 6768–6772

    PubMed  CAS  Google Scholar 

  • Norman J, Tasu YK, Bacay A, Fine LG (1990) Epidermal growth factor accelerates functional recovery from ischaemic acute tubular necrosis in the rat: role of epidermal growth factor receptor. Clin Sci 78: 445–450

    PubMed  CAS  Google Scholar 

  • Nuell MJ, Stewart DA, Walker L, Friedman V, Wood CM, Owens GA, Smith JR, Schneider EL, Dell’Oreo R, Lumpkin CK, Danner DB, McClung JK (1991) Prohibitin, an evolutionarily conserved intracellular protein that blocks DNA synthesis in normal fibroblasts and HeLa cells. Mol Cell Biol 11: 1372–1381

    Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344: 503–507

    PubMed  CAS  Google Scholar 

  • Ottaviano Y, Gerace L (1985) Phosphorylation of the nuclear lamins during interphase and mitosis. J Biol Chem 260: 624–632

    PubMed  CAS  Google Scholar 

  • Ouellette AJ, Malt RA, Sukhatme VP, Bonventre JV (1990) Expression of two “immediate early” genes, Egr–1 and c-fos, in response to renal ischemia and during compensatory renal hypertrophy in mice. J Clin Invest 85: 766–771

    PubMed  CAS  Google Scholar 

  • Pardee AB (1989) Gx events and regulation of cell proliferation. Science 246: 603–608

    PubMed  CAS  Google Scholar 

  • Parker LL, Atherton-Fessler S, Piwnica-Worms H (1992) pl07weel is a dual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc Natl Acad Sci USA 89: 2917–2921

    Google Scholar 

  • Pelech SL, Sanghera JS (1992) MAP kinases: charting the regulatory pathways. Science 257: 1355–1356

    PubMed  CAS  Google Scholar 

  • Pfeilschifter J (1989a) Cross-talk between transmembrane signalling systems: a prerequisite for the delicate regulation of glomerular haemodynamics by mesangial cells. Eur J Clin Invest 19: 347–361

    PubMed  CAS  Google Scholar 

  • Pfeilschifter J (1989b) Cellular signalling in the kidney: the role of inositol lipids. Renal Physiol Biochem 12: 1–31

    PubMed  CAS  Google Scholar 

  • Phillipson L, Sorrentino V (1991) From growth arrest to growth suppression. J Cell Biochem 46: 95–101

    Google Scholar 

  • Pines J, Hunter T (1989) Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58: 833–836

    PubMed  CAS  Google Scholar 

  • Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR (1991) Phosphorylation of c-jun mediated by MAP kinases. Nature 353: 671–674

    Google Scholar 

  • Rankin CA, Grantham J J, Calvet JP (1992) c-fos expression is hypersensitive to serum stimulation in cultured cystic kidney cells from the C57BL/6jcpkfc mouse. J Cell Physiol 152: 578–586

    Google Scholar 

  • Ransone LJ, Verma IM (1989) Association of nuclear oncoproteins fos and jun. Curr Opin Cell Biol 1: 536–540

    PubMed  CAS  Google Scholar 

  • Rauscher FJ III, Morris JF, Tournay OE, Cook DM, Curran T (1990) Binding of the Wilms tumor locus zinc-finger protein to the EGR-1 consensus sequence. Science 250: 1259–1262

    PubMed  CAS  Google Scholar 

  • Rayer PFO (1837–1841) Traite des maladies des reins et des alterations secretion urinaire. 3 volumes and atlas. Balliere, Paris

    Google Scholar 

  • Reed SI (1991) G1-specific cyclins: in search of an S–phase–promoting factor. TIG 7: 95–99

    Google Scholar 

  • Ritz E, Zeier M, Lundin P (1989) French and German nephrologists in the mid-19th century. Am J Physiol 9: 167–172

    CAS  Google Scholar 

  • Rocco MV, Chen Y, Goldfarb S, Ziyadeh FN (1992) Elevated glucose levels stimulate transforming growth factor-beta gene expression and bioactivity in murine proximal tubule cell culture. Kidney Int 41: 107–114

    PubMed  CAS  Google Scholar 

  • Rogers SA, Miller SB, Hammerman MR (1991) Insulin-like growth factor I gene expression in isolated rat renal collecting duct is stimulated by epidermal growth factor. J Clin Invest 87: 347–351

    PubMed  CAS  Google Scholar 

  • Rosenberg ME, Hostetter TH (1990) Effect of angiotensin II (A II) on early growth genes in the kidney. J Am Soc Nephrol 1: 426 (abstract)

    Google Scholar 

  • Rosenberg ME, Paller MS (1991) Differential gene expression in the recovery from ischemic renal injury. Kidney Int 39: 1156–1161

    PubMed  CAS  Google Scholar 

  • Rozengurt E, Murray M, Zachary I, Collins M (1987) Protein kinase C activation enhances cAMP accumulation in Swiss 3T3 cells: inhibition by pertussis toxin. Proc Natl Acad Sci USA 84: 2282–2286

    PubMed  CAS  Google Scholar 

  • Russell P, Nurse P (1986) Cdc25 + functions as an inducer in the mitotic control of fission yeast. Cell 45: 145–153

    PubMed  CAS  Google Scholar 

  • Russell P, Nurse P (1987) Negative regulation of mitosis by weel+, a gene encoding a protein kinase homolog. Cell 49: 559–567

    PubMed  CAS  Google Scholar 

  • Rysek RP, Hirai SI, Bravo R (1988) Transcriptional activation of c-jun during the G0/G1 transition in mouse fibroblasts. Nature 334: 535–537

    Google Scholar 

  • Safirstein R, Price PM, Saggi SJ, Harris RC (1990) Changes in gene expression after temporary renal ischemia. Kidney Int 37: 1515–1521

    PubMed  CAS  Google Scholar 

  • Salido EC, Yen PH, Shapiro LJ, Fisher DA, Barajas L (1989) In situ hybridization of prepro-epidermal growth factor mRNA in the mouse kidney. Am J Physiol 256: F632–F638

    PubMed  CAS  Google Scholar 

  • Salihagic A, Mackovic H, Banfic H, Sabolic I (1988) Short–term and long–term stimulation of Na+-H+ exchange in cortical brush–border membranes during compensatory growth of the kidney. Eur J Physiol 413: 190–196

    CAS  Google Scholar 

  • Sassone-Corsi P, Verma IM (1987) Modulation of c-fos gene transcription by negative and positive cellular factors. Nature 326: 507–510

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi P, Sisson JC, Verma IM (1988) Transcriptional autoregulation of the proto-oncogene fos. Nature 334: 314–319

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi P, Visvader J, Ferland L, Mellon PL, Verma IM (1988b) Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: characterization of a cAMP-responsive element. Genes Dev 2: 1529–1538

    PubMed  CAS  Google Scholar 

  • Sawczuk IS, Olsson CA, Buttyan R, Nguyen–Huu MC, Zimmerman KA, Alt FW, Zakeri Z, Wolgemuth D, Reitelman C (1988) Gene expression in renal growth and regrowth. J Urol 140: 1145–1148

    PubMed  CAS  Google Scholar 

  • Sawczuk IS, Hoke G, Olsson CA, Connor J, Buttyan R (1989) Gene expression in response to acute unilateral ureteral obstruction. Kidney Int 35: 1315–1319

    PubMed  CAS  Google Scholar 

  • Sawczuk IS, Olsson CA, Hoke G, Buttyan R (1990) Immediate induction of c-fos and c-myc transcripts following unilateral nephrectomy. Nephron 55: 193–195

    PubMed  CAS  Google Scholar 

  • Schlondorff D, Weber H (1978) Evidence for altered cyclic nucleotide metabolism during compensatory renal hypertrophy and neonatal kidney growth. Yale J Biol Med 51: 387–392

    PubMed  CAS  Google Scholar 

  • Schneider C, King RM, Philipson L (1988) Genes specifically expressed at growth arrest of mammalian cells. Cell 54: 787–793

    PubMed  CAS  Google Scholar 

  • Schrier RW, Harris DCH, Chan L, Shapiro JI, Caramelo C (1988) Tubular hypermetabolism as a factor in the progression of chronic renal failure. Am J Kidney Dis 12: 242–249

    Google Scholar 

  • Schumer M, Colombel MC, Sawczuk IS, Gobe G, Connor J, O’Toole KM, Olsson CA, Wise GJ, Buttyan R (1992) Morphologic, biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia. Am J Pathol 140: 831–838

    Google Scholar 

  • Shirodkar S, Ewen M, DeCaprio JA, Morgan J, Livingston DM, Chittenden T (1992) The transcription factor E2F interacts with the retinoblastoma product and a pl07-cyclin A complex in a cell cycle-regulated manner. Cell 68: 157–166

    PubMed  CAS  Google Scholar 

  • Smith R, Peters G, Dickson C (1988) Multiple RNAs expressed from the int-2 gene in mouse embryonal carcinoma cell lines encode a protein with homology to fibroblast growth factors. EMBOJ7: 1013–1022

    Google Scholar 

  • Sporn MB, Roberts AB, Wakefield LM, Assoian RK (1986) Transforming growth factor-ß: biological function and chemical structure. Science 233: 532–534

    PubMed  CAS  Google Scholar 

  • Stiles AD, Sosenko IR, D’ercole AJ, Smith BT (1985) Relation of kidney tissue somatomedin- C/insulin-like growth factor I to postnephrectomy renal growth in the rat. Endocrinology 117: 2397–2401

    Google Scholar 

  • Stryer L, Bourne HR (1986) G proteins: a family of signal transducers. Annu Rev Cell Biol 2: 391–419

    PubMed  CAS  Google Scholar 

  • Studzinski GP, Brelvi ZS, Feldman SC, Watt RA (1986) Participation of c-myc protein in DNA synthesis of human cells. Science 234: 467–470

    PubMed  CAS  Google Scholar 

  • Stürzbecher HW, Maimets T, Chumakov P, Brain R, Addison C, Simanis V, Rudge K, Philp R, Grimaldi M, Court W, Jenkins JR (1990) p53 interacts with p34cdc2 in mammalian cells: implications for cell cycle control and oncogenesis. Oncogene 5: 795–801

    Google Scholar 

  • Sukhatme VP, Kartha S, Toback GF, Taub R, Hoover RG, Tsai-Morris CH (1987) A novel early growth response gene rapidly induced by fibroblast, epithelial cell and lymphocyte mitogens. Oncogene Res 1: 343–355

    PubMed  CAS  Google Scholar 

  • Sukhatme VP, Cao X, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PCP, Cohen DR, Edwards SA, Shows TB, Curran T, Le Beau MM, Adamson ED (1988) A zinc-finger-encoding gene co-regulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53: 37–43

    PubMed  CAS  Google Scholar 

  • Sukhatme VP (1990) Early transcriptional events in cell growth: the egr family. J Am Soc Nephrol 1: 859–866

    PubMed  CAS  Google Scholar 

  • Taylor SS (1989) cAMP-dependent protein kinase. J Biol Chem 262: 8443–8446

    Google Scholar 

  • Tisher CC, Madsen KM (1988) Anatomy of the renal interstitium. In: Nephrology, vol 1. Proceedings of the 10th international congress on nephrology. Bailliere Tindall, London, pp 587–598

    Google Scholar 

  • Toback FG, Walsh–Reitz MM; Mendley SR, Kartha S (1990) Kidney epithelial cells release growth factors in response to extracellular signals. Pediatr Nephrol 4: 363–371

    PubMed  CAS  Google Scholar 

  • Toback FG (1992) Regeneration after acute tubular necrosis. Kidney Int 41: 226–246

    PubMed  CAS  Google Scholar 

  • Travali S, Koniecki J, petralia S, Baserga R (1990) Oncogenes in growth and development. FASEB J 4: 3209–3214

    PubMed  CAS  Google Scholar 

  • Tsai-Morris CH, Cao X, Sukhatme VP (1988) 5’ Flanking sequence and genomic structure of Egr-1, a murine mitogen-inducible, zinc-finger-encoding gene. Nucleic Acid Res 16: 8835–8846

    Google Scholar 

  • Trudel M, DAgati V, Constantini F (1989) The c-myc oncogene induces kidney cysts in transgenic mice. Kidney Int 35: 364 (abstract)

    Google Scholar 

  • Turner R, Tjian R (1989) Leucine repeats and an adjacent DNA-binding domain mediate the formation of functional c-fos-c-jun heterodimers. Science 243: 1689–1694

    PubMed  CAS  Google Scholar 

  • Uchida S, Tsutsumi O, Hise MK Oka T (1988) Role of epidermal growth factor in compensatory renal growth. Kidney Int 33: 387 (abstract)

    Google Scholar 

  • Ullrich A, Schlesinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212

    PubMed  CAS  Google Scholar 

  • Ullrich SJ, Anderson CW, Mercer WE, Appella E (1992) The p53 tumor-suppressor protein, a modulator of cell proliferation. J Biol Chem 267: 15259–15262

    PubMed  CAS  Google Scholar 

  • Vogt PK, Tjian R (1988) Jun: a transcriptional regulator turned oncogenic. Oncogene 3: 3–7

    CAS  Google Scholar 

  • Ward GE, Kirschner MW (1990) Identification of cell cycle-regulated phosphorylation sites on nuclear lamin C. Cell 61: 561–577

    PubMed  CAS  Google Scholar 

  • Weintraub SJ, Prater CA, Deán DC (1992) Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358: 259–261

    PubMed  CAS  Google Scholar 

  • Wells A, Mallucci L (1991) Identification of an autocrine negative growth factor: mouse ß- galactoside-binding protein is a cytostatic factor and cell growth regulator. Cell 64: 91–97

    PubMed  CAS  Google Scholar 

  • Wesson LG (1989) Compensatory growth and other growth responses of the kidney. Nephron 51: 149–184

    PubMed  CAS  Google Scholar 

  • Wolf G (1992) History of nephrology. Changing concepts of compensatory renal growth: from humoral pathology to molecular biology. Am J Nephrol 12: 369–373

    PubMed  CAS  Google Scholar 

  • Wolf G, Neilson EG (1990a) Angiotensin II induces cellular hypertrophy in cultured murine proximal tubular cells. Am J Physiol 259: F768–F777

    PubMed  CAS  Google Scholar 

  • Wolf G, Neilson EG (1990b) Angiotensin II (A II)-induced genes in murine proximal tubule cells: isolation and preliminary characterization. J Am Soc Nephrol 1: 429 (abstract)

    Google Scholar 

  • Wolf G, Neilson EG (1991) Molecular mechanisms of tubulointerstitial hypertrophy and hyperplasia. Kidney Int 39: 401–420

    PubMed  CAS  Google Scholar 

  • Wolf G, Neilson EG (1993) Angiotensin II as a hypertrophogenic cytokine for proximal tubular cells. Kidney Int 43 [Suppl. 39]: S100–S107

    CAS  Google Scholar 

  • Wolf G, Killen PD, Neilson EG (1991a) Intracellular signalling of transcription and secretion of type-IV collagen after angiotensin II–induced cellular hypertrophy in cultured proximal tubular cells. Cell Reg 2: 219–227

    CAS  Google Scholar 

  • Wolf G, Heeger PS, Neilson EG (1991b) Proto-oncogenes as targets of hormone and growth-factor actions in the kidney. In: Goldfarb S, Ziyadeh FN (eds) Hormones, autacoids, and the kidney. Contemporary issues in nephrology. Churchill Livingstone, New York, pp 11–139

    Google Scholar 

  • Wolg G, Neilson EG, Goldfarb S, Ziyadeh FN (1991c) The influence of glucose concentration on angiotensin II–induced hypertrophy of proximal tubular cells in culture. Biochem Biophys Res Commun 176: 902–909

    Google Scholar 

  • Wolf G, Kuncio GS, Sun MJ, Neilson EG (199Id) Expression of homeobox genes in a proximal tubular cell line derived from adult mice. Kidney Int 39: 1027–1033

    Google Scholar 

  • Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM (1992) Wild-type p53 restores cell cycle control and inhibits amplification in cells with mutant p53 alleles. Cell 70: 937–948

    PubMed  CAS  Google Scholar 

  • Ziegler A, Knesel J, Fabbro D, Nagamine Y (1991) Protein kinase C down-regulation enhances Camp-mediated induction of urokinase-type plasminogen activator mRNA in LLC-PKX cells. J Biol Chem 266: 21067–21074

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolf, G., Neilson, E.G. (1995). Cellular Biology of Tubulointerstitial Growth. In: Dodd, S.M. (eds) Tubulointerstitial and Cystic Disease of the Kidney. Current Topics in Pathology, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79517-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79517-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79519-0

  • Online ISBN: 978-3-642-79517-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics