Structure Formation in Charge Density Wave Systems

  • M. J. Bünner
  • G. Heinz
  • A. Kittel
  • J. Parisi
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 79)


We investigate organic and inorganic crystals with a quasi-one-dimensional electronic structure. It is well established that these systems are able to undergo a Peierls transition. Below the transition temperature the electrons increasingly condensate to a charge density wave. The charge density wave is able to contribute to the charge transport above a threshold electrical field, leading to nonlinear conductivity. The motion of the condensate is accompanied by narrow-band noise and broad-band noise. The metastability of the charge density wave defects leads to hysteresis and memory effects. Self-organized criticality and switching oscillations have been found near the threshold electrical field. The observed complex behavior in the time domain makes it plausible to expect charge density wave systems also to organize in space.


Charge Density Wave Spatial Degree Nonlinear Conductivity Radical Cation Salt Threshold Electrical Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [6.1]
    R.F. Peieris: Quantum Theory of Solids (Clarendon, Oxford 1955)p. 108Google Scholar
  2. [6.2]
    M.J. Rice, S. Strâssler: Solid State Commun. 13, 125 (1973)CrossRefGoogle Scholar
  3. [6.3]
    K.F. Fung, J.W. Steeds: Phys. Rev. Lett. 455, 1696 (1980)CrossRefGoogle Scholar
  4. [6.4]
    C.H. Chen, R.M. Fleming, P.M. Petroff: Phys. Rev. B 27, 4459 (1983)CrossRefGoogle Scholar
  5. [6.5]
    C.H. Chen, R.M. Fleming: Solid State Commun. 48, 777 (1983)CrossRefGoogle Scholar
  6. [6.6]
    M.J. Rice, S. Strâssler: Solid State Commun. 13, 1389 (1973)CrossRefGoogle Scholar
  7. [6.7]
    G.A. Toombs: Phys. Rep. 40, 181 (1978)CrossRefGoogle Scholar
  8. [6.8]
    P. Monceau: Properties of Inorganic Quasi-One-Dimensional Metals, Vol. 2 ( Rei-del, Holland 1986 )Google Scholar
  9. [6.9]
    G. Grüner: Rev. Mod. Phys. 60, 1129 (1988)CrossRefGoogle Scholar
  10. [6.10]
    C. Schlenker, J. Dumas, C. Escribe-Filippini, H. Guyot: In Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, ed. by C. Schlenker ( Kluwer, Dordrecht 1989 ) p. 159CrossRefGoogle Scholar
  11. [6.11]
    J. Dumas, C. Schlenker: Int. J. Phys. B, to be publishedGoogle Scholar
  12. [6.12]
    A.J. Heeger: In Highly Conducting One-Dimensional Solids, ed. by J.T. Devreese ( Plenum Press, New York 1979 )Google Scholar
  13. [6.13]
    W. Riess: Thermische Hysterese und Ladungsdichtewellen am quasi-eindimen-sionalen Leiter (Fluoranthen)2 PF2. Ph. D. Thesis, University of Bayreuth (1992)Google Scholar
  14. [6.14]
    W. Brütting: Peierlsinstabilitât und Ladungsdichtewellentransport in Fluoran-then-und Perylenradikalkationensalzen. Diploma Thesis, University of Bayreuth(1992)Google Scholar
  15. [6.15]
    R.M. Fleming, L.F. Schneemeyer: Phys. Rev. B 28, 6996 (1983)CrossRefGoogle Scholar
  16. [6.16]
    J. Peinke, A. Kittel, J. Dumas: Europhys. Lett. 18, 125 (1992)CrossRefGoogle Scholar
  17. [6.17]
    P. Bak, C. Tang, K. Wiesenfeld: Phys. Rev. A 38, 364 (1988)CrossRefGoogle Scholar
  18. [6.18]
    H.G. Schuster: Deterministic Chaos (VCH, Weinheim 1988 )Google Scholar
  19. [6.19]
    J. Peinke, J. Parisi, O.E. Rössler, R. Stoop: Encounter with Chaos ( Springer, Berlin 1992 )CrossRefGoogle Scholar
  20. [6.20]
    A. Maeda, T. Furuyama, S. Tanaka: Solid State Commun. 55, 951 (1985)CrossRefGoogle Scholar
  21. [6.21]
    A. Maeda, T. Furuyama, K. Uchinokura, S. Tanaka: Solid State Commun. 58, 25 (1986)CrossRefGoogle Scholar
  22. [6.22]
    R.E. Thorne, W.G. Lyons, J.W. Lyding, J.R. Tucker, J. Bardeen: Phys. Rev. B 35, 6360 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. J. Bünner
    • 1
  • G. Heinz
    • 1
  • A. Kittel
    • 1
  • J. Parisi
    • 1
  1. 1.Physical InstituteUniversity of BayreuthBayreuthGermany

Personalised recommendations