Skip to main content

Structure and modifications of the junior chaperone α-crystallin

From lens transparency to molecular pathology

  • Chapter
EJB Reviews 1994

Part of the book series: EJB Reviews 1994 ((EJB REVIEWS,volume 1994))

Abstract

α-Crystallin is a high-molecular-mass protein that for many decades was thought to be one of the rare real organ-specific proteins. This protein exists as an aggregate of about 800 kDa, but its composition is simple. Only two closely related subunits termed αA- and αB-crystallin, with molecular masses of approximately 20 kDa, form the building blocks of the aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

HSP:

heat-shock protein

FAB:

fast-atom-bombardment.

References

  1. Mömer, C. T. (1894) Untersuchung der Proteinsubstanzen in den leichtbrechenden Medien des Auges, Hoppe Seyler’s Z. Physiol. Chem. 18, 61–106.

    Google Scholar 

  2. de Jong, W. W. (1981), Evolution of lens and crystallins, in Molecular and cellular biology of the eye lens (Bloemendal, G., ed.), pp. 221–278, Wiley, New York.

    Google Scholar 

  3. Stapel, S. O., Leunissen, J. A. M., Versteeg, M., Wattel, J. & de Jong, W. W. (1984) Ratites as oldest offshoot of avian stem - evidence from α-crystallin A sequences, Nature 311, 257–259.

    Article  PubMed  CAS  Google Scholar 

  4. de Jong, W. W., Leunissen, J. A. M., Leenen, P. J. M., Zweers, A. & Versteeg, M. (1988) Dogfish α-crystallin sequence. Comparison with small heat-shock proteins and Schistosoma egg antigen, J. Biol. Chem. 263, 5141–5149.

    PubMed  Google Scholar 

  5. Cohen, L. H., Westerhuis, L. W., de Jong, W. W. & Bloemendal, H. (1978) Rat α-crystallin A chain with an insertion of 22 amino acids, Eur. J. Biochem. 89, 259–266.

    Article  PubMed  CAS  Google Scholar 

  6. Ingolia, T. D. & Craig, E. A. (1982) Four small heat-shock proteins are related to each other and to mammalian α-crystallin, Proc. Natl Acad. Sci. USA 79, 2360–2364.

    Article  PubMed  CAS  Google Scholar 

  7. Maisel, H. (1963) The immunologic specificity of lens antigens, Am. J. Ophthalmol. 55, 1208–1216.

    Google Scholar 

  8. Clayton, R. M., Campbell, J. C. & Truman, D. E. S. (1968) A re-examination of organ specificity of lens antigens, Exp. Eye Res. 7, 11–29.

    Article  PubMed  CAS  Google Scholar 

  9. Moscona, A. A., Fox, L., Smith, J. & Degenstein, L. (1985) Antiserum to lens antigens immunostains Muller glia cells in the neural retina, Proc. Natl Acad. Sci. USA 82, 55705573.

    Article  Google Scholar 

  10. Bhat, S. P. & Nagineni, C. N. (1989) αB subunit of lens-specific protein α-crystallin is present in other ocular and nonocular tissue, Biochem. Biophys. Res. Commun. 158, 319–325.

    Article  PubMed  CAS  Google Scholar 

  11. Dubin, R. A., Wawrousek, E. F. & Piatigorsky, J. (1989) Expression of the murine αB-crystallin is not restricted to the lens, Mol. Cell. Biol. 9, 1083–1091.

    PubMed  CAS  Google Scholar 

  12. Duguid, J. R., Rohwer, R. G. & Seed, B. (1988) Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library, Proc. Natl Acad. Sci. USA 85, 5738–5742.

    Article  PubMed  CAS  Google Scholar 

  13. Kato, K., Shinohara, H., Kurobe, N., Goto, S., Inaguma, Y. & Ohshima, K. (1991) Immunoreactive aA-crystallin in rat non-lenticular tissues detected with a sensitive immunoassay system, Biochim. Biophys. Acta 1080, 173–180.

    Article  PubMed  CAS  Google Scholar 

  14. Klemenz, R., Fröhli, E., Steiger, R. H., Schäfer, R. & Aoyama, A. (1991) αB-crystallin is a small heat-shock protein, Proc. Natl Acad. Sci. USA 88, 3652–3656.

    Article  PubMed  CAS  Google Scholar 

  15. Piatigorsky, J. (1989) Lens crystallins and their genes: diversity and tissue-specific expression, FASEB J. 3, 1933–1940.

    PubMed  CAS  Google Scholar 

  16. Wistow, G. J. & Piatigorsky, J. (1988) Lens crystallins: the evolution and expression of proteins for a highly specialized tissue, Annu. Rev. Biochem. 52, 479–504.

    Article  Google Scholar 

  17. Piatigorsky, J. & Wistow, G. J. (1989) Enzyme/crystallins: gene sharing as an evolutionary stategy, Cell 57, 197–199.

    Article  PubMed  CAS  Google Scholar 

  18. de Jong, W. W., Hendriks, W., Mulders, J. W. M. & Bloemendal, H. (1989) Evolution of eye lens crystallins: the stress connection, Trends Biochem. Sci. 14, 365–368.

    Article  PubMed  Google Scholar 

  19. Ciocca, D. R., Oesterreich, S., Chamness, G. C., McGuire, W. L. & Fuqua, S. A. W. (1993) Biological and clinical implications of heat-shock protein 27000 (Hsp27): a review, J. Natl. Cancer Inst. 85, 1558–1569.

    Article  PubMed  CAS  Google Scholar 

  20. Jaenicke, R. & Creighton, T. E. (1993) Junior chaperons, Curr. Biol. 3, 234–235.

    Article  PubMed  CAS  Google Scholar 

  21. de Jong, W. W., Leunissen, J. A. M. & Voorter, C. E. M. (1993) Evolution of the α-crystallin/small heat-shock protein family, Mol. Biol. Evol. 10, 103–116.

    PubMed  Google Scholar 

  22. Iwaki, T., Iwaki, A. & Goldman, J. E. (1993) αB-crystallin in oxidative muscle fibers and its accumulation in ragged-red fibers: a comparative immunohistochemical and histochemical study in human skeletal muscle, Acta Neuropathol. 85, 475–480.

    Article  PubMed  CAS  Google Scholar 

  23. Kato, K., Shinohara, H., Kurobe, N., Inaguma, Y., Shimizu, K. & Ohshima, K. (1991) Tissue distribution and developmental profiles of immnoreactive αB-crystallin in the rat determined with a sensitive immunoassay system, Biochim. Biophys. Acta 1074, 201–208.

    Article  PubMed  CAS  Google Scholar 

  24. Gething, M.-J. & Sambrook, J. (1992) Protein folding in the cell, Nature 355, 33–45.

    Article  PubMed  CAS  Google Scholar 

  25. Hendrick, J. P. & Hartl, F. U. (1993) Molecular chaperone functions of heat-shock proteins, Annu. Rev. Biochem. 62, 349–384.

    Article  PubMed  CAS  Google Scholar 

  26. Rollet, E., Lavoie, J. N., Landry, J. & Tanguay, R. M. (1992) Expression of Drosophila’s 27 kDa heat-shock protein into rodent cells confers thermal resistance, Biochem. Biophys. Res. Commun. 185, 116–121.

    Article  PubMed  CAS  Google Scholar 

  27. Lavoie, J. N., Gingras-Breton, G., Tanguay, R. M. & Landry, J. (1993) Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat-shock, J. Biol. Chem. 268, 3420–3429.

    PubMed  CAS  Google Scholar 

  28. Mehlen, P., Briolay, J., Smith, L., Diazlatoud, Fabre, N., Pauli, D. & Arrigo, A. P. (1993) Analysis of the resistance to heat and hydrogen peroxide stresses in COS cells transiently expressing wild type or deletion mutants of the Drosophila 27- kDa heat-shock protein, Eur. J. Biochem. 215, 277–284.

    Article  PubMed  CAS  Google Scholar 

  29. Susek, R. E. & Lindquist, S. L. (1989) HSP26 of Saccharo myces cerevisiae is related to the superfamily of small heat- shock proteins but is without a demonstrable function, Mol. Cell. Biol. 9, 5265–5271.

    PubMed  CAS  Google Scholar 

  30. Miron, T., Vancompemolle, K., Vandekerckhove, J., Wilchek, M. & Geiger, B. (1991) A 25-kD inhibitor of actin polymerization is a low molecular mass heat-shock protein, J. Cell Biol. 114, 255–261.

    Article  PubMed  CAS  Google Scholar 

  31. Vierling, E. (1991) The roles of heat-shock proteins in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 579–620.

    Article  CAS  Google Scholar 

  32. Allen, S. P., Polazzi, J. O., Gierse, J. K. & Easton, A. M. (1992) Two novel heat-shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli, J. Bacteriol. 174, 6938–6947.

    PubMed  CAS  Google Scholar 

  33. Heidelbach, M., Skladny, H. & Schairer, H. U. (1993) Heat- shock and development induce synthesis of a low-molecular- weight stress-responsive protein in the myxobacterium Stigmatella aurantiaca, J. Bacteriol. 175, 7479–7482.

    PubMed  CAS  Google Scholar 

  34. Takagi, T., Yasunaga, H. & Nakamura, A. (1993) Structure of 29- kDa protein from ascidian (Halocynthia roretzi) body wall muscle, J. Biochem. (Tokyo) 113, 321–326.

    CAS  Google Scholar 

  35. Wistow, G. (1985) Domain structure and evolution in α-crystallins and small heat-shock proteins, FEBS Lett. 181, 1–6.

    Article  PubMed  CAS  Google Scholar 

  36. Lee, D. C., Kim, R. Y. & Wistow, G. J. (1993) An avian αB- crystallin, J. Mol. Biol. 232, 1221–1226.

    Article  PubMed  CAS  Google Scholar 

  37. Merck, K. B., Groenen, P. J. T. A., Voorter, C. E. M., de Haard-Hoekman, W. A., Horwitz, J., Bloemendal, H. & de Jong, W. W. (1993) Structural and functional similarities of bovine α-crystallin and mouse small heat-shock protein, J. Biol. Chem. 268, 1046–1052.

    PubMed  CAS  Google Scholar 

  38. Spector, A., Li, L.-K., Augusteyn, R. C., Schneider, A. & Freund, T. (1971) α-Crystallin. The isolation and characterization of distinct macromolecular fractions, Biochem. J.124, 337–343.

    PubMed  CAS  Google Scholar 

  39. Clauwaert, J., Ellerton, H. D., Koretz, J. F., Thomson, K. & Augusteyn, R. C. (1989) The effect of temperature on the renaturation of α-crystallin, Curr. Eye Res. 8, 397–403.

    Article  PubMed  CAS  Google Scholar 

  40. Collier, N. C., Heuser, J., Levy, M. A. & Schlesinger, M. J. (1988) Ultrastructural and biochemical analysis of the stress granule in chicken embryo fibroblasts, J. Cell Biol. 106, 1131–1139.

    Article  PubMed  CAS  Google Scholar 

  41. Arrigo, A.-R, Suhan, J. P. & Welch, W. J. (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat-shock protein, Mol. Cell. Biol. 8, 5059–5071.

    PubMed  CAS  Google Scholar 

  42. Chiesi, M., Longoni, S. & Limbruno, U. (1990) Cardiac α-crystallin. Ill Involvement during heart ischemia, Mol. Cell. Biol. 97, 129–136.

    CAS  Google Scholar 

  43. Nover, L., Scharf, K.-L. & Neumann, D. (1989) Cytoplasmic heat-shock granules are formed from precursor particles and are associated with a specific set of mRNAs, Mol. Cell. Biol. 9, 1298–1308.

    PubMed  CAS  Google Scholar 

  44. Collier, N. C. & Schlesinger, M. J. (1986) The dynamic state of heat-shock proteins in chicken embryo fibroblasts, J. Cell Biol. 103, 1495–1507.

    Article  PubMed  CAS  Google Scholar 

  45. Inaguma, Y., Shinohara, H., Goto, S. & Kato, K. (1992) Translocation of αB-crystallin by heat-shock in rat glioma (GA-1) cells, Biochem. Biophys. Res. Commun. 182, 844–850.

    Article  PubMed  CAS  Google Scholar 

  46. Voorter, C. E. M., Wintjes, L., Bloemendal, H. & de Jong, W. W. (1992) Relocalization of αB-crystallin by heat-shock in ovarian carcinoma cells, FEBS Lett. 309, 111–114.

    Article  PubMed  CAS  Google Scholar 

  47. Zantema, A., Verlaan-de Vries, M., Maasdam, D., Bol, S. & van der Eb, A. (1992) Heat-shock protein 27 and αB-crystallin can form a complex, which dissociates by heat-shock, J. Biol. Chem. 267, 12936–12941.

    PubMed  CAS  Google Scholar 

  48. Kato, K., Shinohara, H., Goto, S., Inaguma, Y., Morishita, R. & Asano, T. (1992) Compurification of small heat-shock protein with αB-crystallin from human skeletal muscle, J. Biol. Chem. 267, 7718–7725.

    PubMed  CAS  Google Scholar 

  49. Arrigo, A.-P. & Pauli, D. (1988) Characterization of HSP27 and three immunologically related polypeptides during Drosophila development, Exp. Cell Res. 175, 169–183.

    Article  PubMed  CAS  Google Scholar 

  50. Longoni, S., Lattonen, S., Bullock, G. & Chiesi, M. (1990) Cardiac α-crystallin. II. Intracellular localization, Mol. Cell. Biol. 97, 121–128.

    CAS  Google Scholar 

  51. Behlke, J., Lutsch, G., Gaestel, M. & Bielka, H. (1991) Supramolecular structure of the recombinant murine small heat-shock protein hsp25, FEBS Lett. 288, 119–122.

    Article  PubMed  CAS  Google Scholar 

  52. Quax-Jeuken, Y., Quax, W., van Rens, G. L. M., Meera Khan, P. & Bloemendal, H. (1985) Assignment of the human aA- crystallin gene (CRYA1) to chromosome 21, Cytogenet. Cell Genet. 40, 727–728.

    Google Scholar 

  53. Ngo, J. T., Klisak, I., Dubin, R. A., Piatigorsky, J., Mohandas, T., Sparkes, R. S. & Bateman, B. (1989) Assignment of the αB-crystallin gene to human chromosome 11, Genomics 5, 665–669.

    Article  PubMed  CAS  Google Scholar 

  54. Wijnen, J. T., Oldenburg, M., Bloemendal, H. & Meera Khan, P. (1989) Int. Workshop Hum. Gene Mapping, 10th New Haven Conference.

    Google Scholar 

  55. Brakenhoff, R. H., Geurts van Kessel, A. H. M., Oldenburg, M., Wijnen, J. T., Bloemendal, H., Meera Khan, P. & Schoenmakers, J. G. G. (1990) Human αB-crystallin (CRYA2) gene mapped to chromosome Ilql2-q23, Hum. Genet. 85, 237–240.

    Article  PubMed  CAS  Google Scholar 

  56. Kato, K., Goto, S., Hasegawa, K. & Inaguma, Y. (1993) Coinduction of two low-molecular-weight stress proteins, αB crystallin and HSP28, by heat or arsenite stress in human glioma cells, J. Biochem. (Tokyo) 114, 640–647.

    CAS  Google Scholar 

  57. DasGupta, S., Hohman, T. C. & Carper, D. (1992) Hypertonic stress induces αB-crystallin expression, Exp. Eye Res. 54, 461–470.

    Article  PubMed  CAS  Google Scholar 

  58. Rossi, J. M. & Lindquist, S. (1989) The intracellular location of yeast heat-shock protein 26 varies with metabolism, J. Cell Biol. 108, 425–439.

    Article  PubMed  CAS  Google Scholar 

  59. Gemold, M., Knauf, U., Gaestel, M., Stahl, J. & Kloetzel, P M. (1993) Development and tissue-specific distribution of mouse small heat-shock protein hsp25, Dev. Genet. 14, 103–111.

    Article  Google Scholar 

  60. Hayward, J. R., Coffer, A. I. & King, R. J. B. (1990) Immunoaffinity purification and characterization of p29 - an estrogen receptor related protein, J. Steroid Biochem. Mol. Biol. 37, 513–519.

    Article  PubMed  CAS  Google Scholar 

  61. Morimoto, R. I., Tissières, A. & Georgopoulos, C. (1990) Stress proteins in biology and medicine, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  62. Aoyama, A., Fröhli, E., Schäfer, R. & Klemenz, R. (1993) αB-crystallin expression in mouse NIH 3T3 fibroblasts: glucocorticoid responsiveness and involvement in thermal protection, Mol. Cell. Biol. 13, 1824–1835.

    PubMed  CAS  Google Scholar 

  63. Sax, C. M. & Piatigorsky, J. (1994) Expression of the β-crys- tallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues, Adv. Enzymol., in the press.

    Google Scholar 

  64. Voorter, C. E. M., Mulders, J. W. M., Bloemendal, H. & de Jong, W. W. (1986) Some aspects of the phosphorylation of α-crystallin, Eur. J. Biochem. 160, 203–210.

    Article  PubMed  CAS  Google Scholar 

  65. Chiesa, R., Gawinowicz-Kolks, M. A., Kleiman, N. J. & Spector, A. (1987) The phosphorylation sites of the B2 chain of bovine α-crystallin, Biochem. Biophys. Res. Commun. 144, 1340–1347.

    Article  PubMed  CAS  Google Scholar 

  66. Chiesa, R. & Spector, A. (1989) The dephosphorylation of lens α-crystallin A chain, Biochem. Biophys. Res. Commun. 162, 1494–1501.

    Article  PubMed  CAS  Google Scholar 

  67. Mann, E., McDermott, M. J., Goldman, J., Chiesa, R. & Spector, A. (1991) Phosphorylation of α-crystallin B in Alexander’s disease brain, FEBS Lett. 294, 133–136.

    Article  PubMed  CAS  Google Scholar 

  68. Arrigo, A.-P. & Welch, W. J. (1987) Characterization and purification of the small 28000-Dalton mammalian heat-shock protein, J. Biol. Chem. 262, 15359–15369.

    PubMed  CAS  Google Scholar 

  69. Saklatvala, J., Kaur, P. & Guesdon, F. (1991) Phosphorylation of the small heat-shock protein is regulated by interleukin 1, tumor necrosis factor, growth factors, bradykinin and ATP, Biochem. J. 277, 635–642.

    PubMed  CAS  Google Scholar 

  70. Landry, J., Chretien, P., Laszlo, A. & Lambert, H. (1991) Phosphorylation of HSP27 during development and decay of thermotolerance in Chinese hamster cells, J. Cell. Physiol.147, 93–101.

    Article  PubMed  CAS  Google Scholar 

  71. Stokoe, D., Engel, K., Campbell, D. G., Cohen, P. & Gaestel, M. (1992) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat-shock proteins, FEBS Lett. 313, 307–313.

    Article  PubMed  CAS  Google Scholar 

  72. Kantorow, M. & Piatigorsky, J. (1994) a-Crystallin/small heat-shock protein has autokinase activity, Proc. Natl Acad. Sci. USA,in the press.

    Google Scholar 

  73. Lavoie, J. N., Hickey, E., Weber, L. A. & Landry, J. (1993) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat-shock protein-27, J. Biol. Chem. 268, 24210–24214.

    PubMed  CAS  Google Scholar 

  74. Knauf, U., Jakob, U., Engel, K., Buchner, J. & Gaestel, M. (1994) Stress- and mitogen-induced phosphorylation of the small heat-shock protein Hsp25 by MAPKAP kinase 2 is not essential for chaperone properties and cellular thermoresistance, EMBO J. 13, 54–60.

    PubMed  CAS  Google Scholar 

  75. Scotting, P., McDermott, H. & Mayer, R. J. (1991) Ubiquitin-protein conjugates and αB-crystallin are selectively present in cells undergoing major cytomorphological reorganisation in early chicken embryos, FEBS Lett. 285, 75–79.

    Article  PubMed  CAS  Google Scholar 

  76. Anson, J. F., Laborde, J. B., Pipkin, J. L., Hinson, W. G., Hanser, D. K., Sheehan, D. M. & Young, J. F. (1991) Target tissue specificity of retinoic acid induced stress proteins and malformations in mice, Teratology 44, 19–28.

    Article  PubMed  CAS  Google Scholar 

  77. Mayer, R. J., Arnold, J., Laszlo, L., Landon, M. & Lowe, J. (1991) Ubiquitin in health and disease, Biochim. Biophys. Acta 1089, 141–157.

    PubMed  CAS  Google Scholar 

  78. Iwaki, T., Wisniewski, T., Iwaki, A., Corbin, E., Tomokane, N., Tateishi, J. & Goldman, J. E. (1992) Accumulation of αB-crystallin in central nervous system glia and neurons in pathological conditions, Am. J. Pathol. 140, 345–356.

    PubMed  CAS  Google Scholar 

  79. Iwaki, T., Iwaki, A., Miyazono, M. & Goldman, J. E. (1991) Preferential expression of αB-crystallin in astrocytic elements of neuroectodermal tumors, Cancer 68, 2230–2240.

    Article  PubMed  CAS  Google Scholar 

  80. Aoyama, A., Steiger, R. H., Fröhli, E., Schäfer, R., Von Deimling, A., Wiestier, O. D. & Klemenz, R. (1993) Expression of αB-crystallin in human brain tumors, Int. J. Cancer 55, 760–764.

    Article  PubMed  CAS  Google Scholar 

  81. Lowe, J., McDermott, H., Pike, I., Splendlove, I., Landon, M. & Mayer, R. J. (1992) αB-crystallin expression in non- lenticular tissues and selective presence in ubiquitinated inclusion bodies in human disease, J. Pathol. 166, 61–68.

    Article  PubMed  CAS  Google Scholar 

  82. Tomokane, N., Iwaki, T., Tateishi, J., Iwaki, A. & Goldman, J. E. (1991) Rosenthal fibers share epitopes with αB-crystallin, glial fibrillary acidic protein, and ubiquitin, but not with vi- mentin, Am. J. Pathol. 138, 875–885.

    PubMed  CAS  Google Scholar 

  83. Renkawek, K., Voorter, C. E. M., Bosman, G. J. C. G. M., van Workum, F. P. A. & de Jong, W. W. (1994) Expression of αB-crystallin in Alzheimer disease, Acta Neuropathol. 87, 155–160.

    Article  PubMed  CAS  Google Scholar 

  84. Renkawek, K., Bosman, G. J. C. G. M. & de Jong, W. W. (1991) Expression of small heat-shock protein hsp 27 in reactive gliosis in Alzheimer disease and other types of dementia. Acta Neuropathol., in the press.

    Google Scholar 

  85. Thor, A., Benz, C., Moore II, D., Goldman, E., Edgerton, S., Landry, J., Schwartz, L., Mayall, B., Hickey, E. & Weber, L. A. (1991) Stress response protein (srp-27) determination in primary human breast carcinomas: clinical, histologic, and prognostic correlations, J. Natl Cancer Inst. 83, 170–178.

    Article  PubMed  CAS  Google Scholar 

  86. Kato, M., Herz, E., Kato, S. & Hirano, A. (1992) Expression of stress-response (heat-shock) protein 27 in human brain tumors: an immunohistochemical study, Acta Neuropathol. 83, 420–422.

    Article  PubMed  CAS  Google Scholar 

  87. Mulders, J. W. M., Stokkermans, J., Leunissen, J. A. M., Benedetti, E. L., Bloemendal, H. & de Jong, W. W. (1985) Interaction of α-crystallin with lens plasma membranes: Affinity for MP26, Eur. J. Biochem. 152, 721–728.

    Article  PubMed  CAS  Google Scholar 

  88. Ifeanyi, F. & Takemoto, L. J. (1990) Specificity of α-crystallin binding to the lens membrane, Curr. Eye Res. 9, 259–265.

    Article  PubMed  CAS  Google Scholar 

  89. Fitzgerald, P. G. & Graham, D. (1991) Ultrastructural localization of α-crystallin to the bovine lens fiber cell cytoskeleton, Curr. Eye Res. 10, 417–436.

    Article  PubMed  CAS  Google Scholar 

  90. Nicholl, I. D. & Quinlan, R. A. (1994) Chaperone activity of alpha -crystallins modulates intermediate filament assembly, EMBO J. 13, 945–953.

    PubMed  CAS  Google Scholar 

  91. Bennardini, F., Wrzosek, A. & Chiesi, M. (1992) αB-crystallin in cardiac tissue, Circ. Res. 71, 288–294.

    PubMed  CAS  Google Scholar 

  92. Grimm, B., Ish-Shalom, D., Even, D., Glaczinski, H., Ottersbach, P., Kloppstech, K. & Ohad, I. (1989) The nuclear- coded chloroplast 22-kDa heat-shock protein of Chlamydo- monas. Evidence for translocation into the organelle without a processing step, Eur. J. Biochem. 182, 539–546.

    Article  PubMed  CAS  Google Scholar 

  93. Adamska, I. & Kloppstech, K. (1991) Evidence for the localization of the nuclear-coded 22-kDa heat-shock protein in a subfraction of thylakoid membranes, Eur. J. Biochem. 198, 375–381.

    Article  PubMed  CAS  Google Scholar 

  94. Lim, L., Hall, C., Leung, T. & Whatley, S. (1984) The relationship of the rat brain 68 kDa microtubule-associated protein with synaptosomal plasma membranes and with the Drosophila 70 kDa heat-shock protein, Biochem. J. 224, 677–680.

    PubMed  CAS  Google Scholar 

  95. Horwitz, J. (1992) α-crystallin can function as a molecular chaperone, Proc. Natl Acad. Sci. USA 89, 10449–10453.

    Article  PubMed  CAS  Google Scholar 

  96. Jakob, U., Gaestel, M., Engel, K. & Buchner, J. (1993) Small heat-shock proteins are molecular chaperones, J. Biol. Chem. 267, 1517–1520.

    Google Scholar 

  97. Carver, J. A., Auqilina, J. A., Cooper, P. G., Williams, G. A. & Truscott, R. J. W. (1994) a-Crystallin: molecular chaperone and protein surfactant, Biochim. Biophys. Acta 1204, 195–206.

    Article  PubMed  CAS  Google Scholar 

  98. Crabbe, M. J. C. & Goode, D. (1994) a-Cry stallin: chaperoning and aggregation, Biochem. J. 297, 653–654.

    PubMed  CAS  Google Scholar 

  99. Delaye, M. & Tardieu, A. (1983) Shortrange order of cry stallin protein accounts for eye lens transparency, Nature 302, 415–417.

    Article  PubMed  CAS  Google Scholar 

  100. Blundell, T., Lindley, P., Miller, L., Moss, D., Slingsby, C., Tickle, I., Tumell, B. & Wistow, G. (1981) The molecular structure and stability of the eye lens: X-ray analysis of γ- crystallin II, Nature 289, 771–777.

    Article  PubMed  CAS  Google Scholar 

  101. Chirgadze, Y. N., Nevskaya, N. A., Fomenkova, N. P., Nikonov, S. V., Sergeev, Y. V., Brazhnikov, E. V., Garber, M. B., Lunin, V. Y., Urzumtsev, A. P. & Vemoslova, E. A. (1986) Posttranstvennaia structura gamma-kristallina Illb iz khrus- talika glaza telenka pri razsheneii 2,5 angstrom, Dokl. Akad. Nauk SSSR 290, 492–495.

    PubMed  CAS  Google Scholar 

  102. White, H. E., Driessen, H. P. C., Slingsby, C., Moss, D. S. & Lindley, P. F. (1989) Packing interactions in the eye-lens. Structural analysis, internal symmetry and lattice interactions of bovine γlVα-crystallin, J. Mol. Biol. 207, 217–235.

    Article  PubMed  CAS  Google Scholar 

  103. Bax, B., Lapatto, R., Nalini, V., Driessen, H., Lindly, P. F., Mahadevan, D., Blundell, T. L. & Slingsby, C. (1990) X-ray analysis of /7B2-crystallin and evolution of oligomeric lens proteins, Nature 347, 776–780.

    Article  PubMed  CAS  Google Scholar 

  104. van Rens, G. L. M., Driessen, H. P. C., Nalini, V., Slingsby, C., de Jong, W. W. & Bloemendal, H. (1991) Isolation and characterization of cDNAs encoding ßA2- and ßA4-crystallin: heterologous interactions in the predicted ßA4-/7B2 heterodimer, Gene 102, 179–188.

    Article  PubMed  Google Scholar 

  105. Siezen, R. J., Bindels, J. G. & Hoenders, H. J. (1978) The quaternary structure of bovine α-crystallin. Size and charge microheterogeneity: More than 1000 different hybrids? Eur. J. Biochem. 91, 387–396.

    Article  PubMed  CAS  Google Scholar 

  106. de Jong, W. W., Mulders, J. W. M., Voorter, C. E. M., Berbers, G. A. M., Hoekman, W. A. & Bloemendal, H. (1988) Post- translational modifications of eye lens crystallins: Crosslinking, phosphorylation and deamidation, in Advances in post- translational modifications of proteins and ageing (Zappia, V., Galletti, P., Porta, R. & Wold, F., eds) pp. 95–108, Plenum Press, New York.

    Google Scholar 

  107. Groenen, P. J. T. A., Bloemendal, H. & de Jong, W. W. (1992) The carboxy-terminal lysine of αB-crystallin is an aminedonor substrate for tissue transglutaminase, Eur. J. Biochem. 205, 671–674.

    Article  PubMed  CAS  Google Scholar 

  108. Roquemore, E. P., Dell, A., Morris, H. R., Panico, M., Reason, A. J., Savoy, L.-A., Wistow, G. J., Zigler, J. S. Jr, Earles, B. J. & Hart, G. W. (1992) Vertebrate lens α-crystallins are modified by O-linked Af-acetylglucosamine, J. Biol. Chem. 267, 555–563.

    PubMed  CAS  Google Scholar 

  109. Voorter, C. E. M., de Haard-Hoekman, W. A., Roersma, E. S., Meyer, H. E., Bloemendal, H. & de Jong, W. W. (1989) The in vivo phosphorylation sites of bovine αB-crystallin, FEBS Lett. 259, 50–52.

    Article  PubMed  CAS  Google Scholar 

  110. Siezen, R. J. & Argos, P. (1983) Structural similarity of lens crystallins. III. Secondary structure estimation from circular dichroism and prediction from amino acid sequences, Biochim. Biophys. Acta 748, 56–67.

    Article  PubMed  CAS  Google Scholar 

  111. Liang, J. N. & Chakrabarti, B. (1982) Spectroscopic investigations of bovine lens crystallins. 1. Circular dichroism and intrinsic fluorescence, Biochemistry 21, 1847–1852.

    Article  PubMed  CAS  Google Scholar 

  112. Li, L.-K. & Spector, A. (1974) Circular dichroism and optical rotatory dispersion of the aggregates of purified polypeptides of alpha crystallin, Exp. Eye Res. 19, 49–57.

    Article  PubMed  CAS  Google Scholar 

  113. Lamba, O. P., Borchman, D., Sinha, S. K., Shah, J., Renugopalakrishnan, V. & Yappert, M. C. (1993) Estimation of the secondary structure and conformation of bovine lens crystallins by infrared spectroscopy: quantitative analysis and resolution by Fourier self-deconvolution and curve fit, Biochim. Biophys. Acta 1163, 113–123.

    Article  PubMed  CAS  Google Scholar 

  114. Siezen, R. J. (1981) Reflections on the internal primary, secondary and tertiary structure similarity of the eye lens proteins a-, ß- and γ-crystallin, FEBS Lett. 133, 1–8.

    Article  PubMed  CAS  Google Scholar 

  115. Argos, P. & Siezen, R. J. (1983) Structural homology of lens crystallins. A method to detect protein structural similarity from primary sequences, Eur. J. Biochem. 131, 143–148.

    Article  PubMed  CAS  Google Scholar 

  116. van den Oetelaar, P. J. M. & Hoenders, H. J. (1989) Foldingunfolding and aggregation-dissociation of bovine α-crystallin subunits; evidence for unfolding intermediates of the aA subunits, Biochim. Biophys. Acta 995, 91–96.

    Article  PubMed  Google Scholar 

  117. Carver, J. A., Aquilina, J. A. & Truscott, R. J. W. (1993) An investigation into the stability of α-crystallin by NMR spectroscopy; evidence for a two-domain structure, Biochim. Biophys. Acta 1164, 22–28.

    Article  PubMed  CAS  Google Scholar 

  118. Maiti, M., Kono, M. & Chakrabarti, B. (1988) Heat-induced changes in the conformation of α- and β-crystallins: unique themal stability of α-crystallin, FEBS Lett. 236, 109–114.

    Article  PubMed  CAS  Google Scholar 

  119. Walsh, M. T., Sen, A. C. & Chakrabarti, B. (1991) Micellar subunit assembly in a three-layer model of oligomeric a- crystallin, J. Biol. Chem. 266, 20079–20084.

    PubMed  CAS  Google Scholar 

  120. Bindels, J. G., Siezen, R. J. & Hoenders, H. J. (1979) A model for the architecture of α-crystallin, Ophthalmic Res. 11, 441–452.

    Article  CAS  Google Scholar 

  121. Siezen, R. J., Coenders, F. G. & Hoenders, H. J. (1978) Three classes of sulphydryl group in bovine α-crystallin according to reactivity to various reagents, Biochim. Biophys. Acta 537, 456–465.

    PubMed  CAS  Google Scholar 

  122. Bindels, J. G., Misdom, L. W. & Hoenders, H. J. (1985) The reaction of citraconic acid anhydride with bovine α-crystallin Lys residues. Surface probing and dissociation-reassociation studies, Biochim. Biophys. Acta 828, 255–260.

    Article  PubMed  CAS  Google Scholar 

  123. Siezen, R. J., Bindels, J. G. & Hoenders, H. J. (1980) The quaternary structure of bovine α-crystallin. Chemical crosslinking with bifunctional imido esters, Eur. J. Biochem. 107, 243–249.

    Article  PubMed  CAS  Google Scholar 

  124. Siezen, R. J. & Berger, H. (1978) The quaternary structure of bovine α-crystallin. II. Size and shape studies by sedimentation, small-angle X-ray scattering and quasi-elastic light scattering, Eur. J. Biochem. 91, 397–405.

    Article  PubMed  CAS  Google Scholar 

  125. Bloemendal, H., Zweers, A., Benedotti, E. L. & Walters, H. (1975) Selective reassociation of the crystallins, Exp. Eye Res. 20, 463–478.

    Article  PubMed  CAS  Google Scholar 

  126. Siezen, R. J. & Hoenders, H. J. (1979) The quaternary structure of bovine α-crystallin. Surface probing by limited proteolysis in vitro, Eur. J. Biochem. 96, 431–440.

    Article  PubMed  CAS  Google Scholar 

  127. Siezen, R. J., Bindels, J. G. & Hoenders, H. J. (1980) The quaternary structure of bovine α-crystallin. Effects of variation in alkaline pH, ionic strength, temperature and calcium ion concententration, Eur. J. Biochem. Ill, 435–444.

    Article  Google Scholar 

  128. Siezen, R. J. & Bindels, J. G. (1982) Stepwise dissociation/denaturation and reassociation/renaturation of bovine α-crystallin in urea and guanidine hydrochloride: sedimentation, fluorescence, near-ultraviolet and far-ultraviolet circular dichroism studies, Exp. Eye Res. 34, 969–983.

    Article  PubMed  CAS  Google Scholar 

  129. Thomson, J. A. & Augusteyn, R. C. (1983) am-Crystallin: the native form of the protein?, Exp. Eye Res. 37, 367–377.

    Article  PubMed  CAS  Google Scholar 

  130. Thomson, J. A. & Augusteyn, R. C. (1984) On the structure of am-crystallin. The reversibility of urea dissociation, J. Biol. Chem. 259, 4339–4345.

    PubMed  CAS  Google Scholar 

  131. van den Oetelaar, P. J., Clauwaert, J., van Laethem, M. & Hoenders, H. J. (1985) The influence of isolation conditions on the molecular mass of bovine α-crystallin, J. Biol. Chem. 260, 14030–14034.

    PubMed  Google Scholar 

  132. Tardieu, A., Laporte, D., Licinio, P., Krop, B. & Delaye, M. (1985) Calf lens α-crystallin quaternary structure: A three- layer tetrahedral model, J. Mol. Biol. 192, 711–724.

    Article  Google Scholar 

  133. Augusteyn, R. C., Hum, T. P., Putilin, T. P. & Thomson, J. A. (1987) The location of sulphydryl groups in α-crystallin, Biochim. Biophys. Acta 915, 132–139.

    Article  PubMed  CAS  Google Scholar 

  134. Thomson, J. A. (1985) A model for multisubunit protein assemblies, PhD Thesis, University of Melbourne.

    Google Scholar 

  135. Butler, D. M. & Augusteyn, R. C. (1986) On the antigenic relationship between the a A- and αB-subunits of α-crystallin in bovine lens, Curr. Eye Res. 5, 225–229.

    Article  PubMed  CAS  Google Scholar 

  136. Augusteyn, R. C., Putilin, T. P. & Seifert, R. (1988) Quenching of tryptophan fluorescence in bovine lens proteins by acrylamide and iodide, Curr. Eye Res. 7, 237–245.

    Article  PubMed  CAS  Google Scholar 

  137. Hendriks, W., Weetink, H., Voorter, C. E. M., Sanders, J., Bloemendal, H. & de Jong, W. W. (1990) Structural equivalence of subunits in the rat α-crystallin aggregate, Biochim. Biophys. Acta 1037, 58–65.

    Article  PubMed  CAS  Google Scholar 

  138. Augusteyn, R. C. & Koretz, J. F. (1987) A possible structure for α-crystallin, FEBS Lett. 222, 1–5.

    Article  PubMed  CAS  Google Scholar 

  139. Phillips, S. R., Wilson, L. J. & Borkman, R. F. (1986) Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins, Curr. Eye Res. 5, 611–619.

    Article  PubMed  CAS  Google Scholar 

  140. Puri, N., Augusteyn, R. C., Owen, E. A. & Siezen, R. J. (1983) Immunochemical properties of vertebrate α-crystallins, Eur. J. Biochem. 134, 321–326.

    Article  PubMed  CAS  Google Scholar 

  141. Hopp, T. P. & Woods, K. R. (1981) Prediction of protein antigenic determinants from amino acid sequences, Proc. Natl Acad. Sci. USA 78, 3824–3828.

    Article  PubMed  CAS  Google Scholar 

  142. Kyte, J. & Doolittle, R. F. (1982) A simple method for displaying the hydrophobic character of a protein, J. Mol. Biol. 157, 105–132.

    Article  PubMed  CAS  Google Scholar 

  143. Radlick, L. W. & Koretz, J. F. (1992) Biophysical characterization of α-crystallin aggregates: validation of the micelle hypothesis, Biochim. Biophys. Acta 1120, 193–200.

    Article  PubMed  CAS  Google Scholar 

  144. Carver, J. A., Aquilina, J. A., Truscott, R. J. W. & Ralston, G. B. (1992) Identification by *H NMR spectroscopy of flexible C-terminal extensions in bovine lens α-crystallin, FEBS Lett. 311, 143–149.

    Article  PubMed  CAS  Google Scholar 

  145. Augusteyn, R. C., Ghiggino, K. P. & Putilina, T. (1993) Studies on the location of aromatic amino acids in α-crystallin, Biochim. Biophys. Acta 1162, 61–71.

    Article  PubMed  CAS  Google Scholar 

  146. van den Oetelaar, P. J., van Someren, P. F H. M., Thomson, J. A., Siezen, R. J. & Hoenders, H. J. (1990) A dynamic quaternary structure of bovine α-crystallin as indicated from intermolecular exchange of subunits, Biochemistry 29, 3488–3493.

    Article  PubMed  Google Scholar 

  147. Rink, H. & Twenhöven, H. (1985) Content and distribution of calcium in bovine lenses of different ages, Ophthalmic Res. 15, 321–324.

    Article  Google Scholar 

  148. Bloemendal, H., Hockwin, O., Hoenders, H. J., Ohrloff, C. & Rink, H. (1985) Linse, in Biochemie des Auges (Hockwin, O., ed.) pp. 82–109, Enke Verlag, Stuttgart.

    Google Scholar 

  149. Chiesa, R., Gawinowicz-Kolks, M. A., Kleiman, N. J. & Spector, A. (1987) Identification of the specific phosphorylated serine in the bovine crystallin Al chain, Curr. Eye Res. 6, 539–542.

    Article  PubMed  CAS  Google Scholar 

  150. Bloemendal, H. (1981) The lens proteins, in Molecular and cellular biology of the eye lens (Bloemendal, H., ed.) pp. 1–47, Wiley, New York.

    Google Scholar 

  151. Harding, J. J. & Crabbe, M. J. C. (1984) The lens: development, protein, metabolism and cataract, in The eye (Davson, H., ed.) pp. 207–492, Academic Press, New York.

    Google Scholar 

  152. Rink, H. (1977) The water content in bovine lenses during aging, Interdiscip. Top. Gerontol. 12, 271–277.

    Google Scholar 

  153. Rink, H., Muenninghoff, J. & Hockwin, O. (1977) Sodium, potassium and calcium contents of bovine lenses in dependence on age, Ophthalmic Res. 9, 129–135.

    Article  CAS  Google Scholar 

  154. Hockwin, O., Rast, F., Rink, H., Muenninghoff, J. & Twenhöven, H. (1978) Water content of lenses of different species, Interdiscip. Top. Gerontol. 13, 102–108.

    Google Scholar 

  155. Spector, A. & Zorn, M. (1967) Architecture of calf lens α-crystallin, J. Biol. Chem. 242, 3594–3600.

    PubMed  CAS  Google Scholar 

  156. Wistow, G. J. (1993) A possible quaternary structure for α-crystallins and small heat-shock proteins, Exp. Eye Res. 56, 729–732.

    Article  PubMed  CAS  Google Scholar 

  157. Merck, K. B., de Haard-Hoekman, W. A., Oude Essink, B. B., Bloemendal, H. & de Jong, W. W. (1992) Expression and aggregation of recombinant aA-crystallin and its two domains, Biochim. Biophys. Acta 1130, 267–276.

    PubMed  CAS  Google Scholar 

  158. Augusteyn, R. C., Parkhill, E. M. & Stevens, A. (1992) The effects of isolation buffers on the properties of α-crystallin, Exp. Eye Res. 54, 219–228.

    Article  PubMed  CAS  Google Scholar 

  159. Hoenders, H. J. & Bloemendal, H. (1981) Aging of lens proteins, in Molecular and cellular biology of the eye lens (Bloemendal, H., ed.) pp. 279–326, Wiley, New York.

    Google Scholar 

  160. Bloemendal, M., van Amerongen, H., Bloemendal, H. & van Grondelle, R. (1989) A structural study of bovine lens a- crystallin and its subunits by absorption and linear dichroism spectroscopy, Eur. J. Biochem. 184, 427–432.

    Article  PubMed  CAS  Google Scholar 

  161. Chiesi, M. & Bennardini, F. (1992) Determination of αB crystallin aggregation: a new alternative method to assess ischemic damage of the heart, Basic Res. Cardiol. 87, 38–46.

    Article  PubMed  CAS  Google Scholar 

  162. Harding, J. (1991) Cataract: biochemistry, epidemiology and pharmacology, Chapman & Hall, London.

    Google Scholar 

  163. Spector, A. (1985) Aspects of the biochemistry of cataract, in The ocular lens structure, Function and pathology (Maisel, G., ed.) pp. 405–438, Marcel Dekker, New York.

    Google Scholar 

  164. Harding, J. J. & Dilley, K. J. (1976) Structural proteins of the mammalian lens: a review with emphasis on changes in development, aging and cataract, Exp. Eye Res. 22, 1–73.

    Article  PubMed  CAS  Google Scholar 

  165. Zigler, J. S. Jr & Goosey, J. (1981) Aging of protein molecules: lens crystallins as a model system, Trends Biochem. Sci. 6, 133–136.

    Article  CAS  Google Scholar 

  166. Hoenders, H. J. & Bloemendal, H. (1983) Lens proteins and aging, J. Gerontol. 38, 278–286.

    PubMed  CAS  Google Scholar 

  167. Robinson, A. B. & Rudd, C. J. (1974) Deamidation of glutaminyl and Asn residues in peptides and proteins, Curr. Top. Cell. Regul. 8, 247–295.

    PubMed  CAS  Google Scholar 

  168. Harding, J. J. (1985) Nonenzymic covalent post-translational modification of proteins in vivo, Adv. Protein Chem. 37, 247–334.

    Article  PubMed  CAS  Google Scholar 

  169. Voorter, C. E. M., Roersma, E. S., Bloemendal, H. & de Jong, W. W. (1987) Age-dependent deamidation of chicken aA- crystallin, FEBS Lett. 221, 249–252.

    Article  PubMed  CAS  Google Scholar 

  170. Voorter, C. E. M., de Haard-Hoekman, W. A., van den Oetelaar, P. J. M., Bloemendal, H. & de Jong, W. W. (1988) Spontaneous peptide bond cleavage in aging α-crystallin through a succinimide intermediate, J. Biol. Chem. 263, 19020–19023.

    PubMed  CAS  Google Scholar 

  171. Kramps, J. A., de Jong, W. W., Wollensak, J. & Hoenders, H. J. (1978) The polypeptide chains of α-crystallin from old human eye lenses, Biochim. Biophys. Acta 533, 487–495.

    PubMed  CAS  Google Scholar 

  172. Groenen, P. J. T. A., van Dongen, M. J. P., Voorter, C. E. M., Bloemendal, H. & de Jong, W. W. (1993) Age-dependent deamidation of αB-crystallin, FEBS Lett. 322, 69–72.

    Article  PubMed  CAS  Google Scholar 

  173. Bomstein, P. & Balian, G. (1977) Cleavage at Asn-Gly bonds with hydroxylamine, Methods Enzymol. 47, 132–145.

    Article  Google Scholar 

  174. Geiger, T. & Clarke, S. (1987) Deamidation, isomerization, and racemization at Asn and Asp residues in peptides, J. Biol. Chem. 262, 785–794.

    PubMed  CAS  Google Scholar 

  175. Stephenson, R. C. & Clarke, S. (1989) Succinimide formation from aspartyl and Asn peptides as a model for the spontaneous degradation of proteins, J. Biol. Chem. 264, 6164–6170.

    PubMed  CAS  Google Scholar 

  176. Groenen, P. J. T. A., van den Ijssel, P. R. L. A., Voorter, C. E. M., Bloemendal, H. & de Jong, W. W. (1990) Site-specific racemization in aging aA-crystallin, FEBS Lett. 269, 109–112.

    Article  PubMed  CAS  Google Scholar 

  177. Fujii, N., Muraoka, S., Satoh, K., Hori, H. & Harada, K. (1991) Racemization of aspartic acids at specific sites in aA-crystal- lin from aged human lens, Biomed. Res. 12, 315–321.

    CAS  Google Scholar 

  178. Fujii, N., Ishibashi, Y., Satoh, K., Fujino, M. & Harada, K. (1994) Simultaneous racemization and isomerization at specific aspartic residues in αB-crystallin from the aged human lens, Biochim. Biophys. Acta 1204, 157–163.

    Article  PubMed  CAS  Google Scholar 

  179. Patel, K. & Borchardt, R. T. (1990) Chemical pathways of peptide degradation. II. Kinetics of deamidation of an Asn residue in a model hexapeptide, Pharmacol. Res. 7, 787–793.

    Article  CAS  Google Scholar 

  180. Tyler-Cross, R. & Schirch, V. (1991) Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of Asn residues in small peptides, J. Biol. Chem. 266, 22549–22556.

    PubMed  CAS  Google Scholar 

  181. Clarke, S. (1987) Propensity for spontaneous succinimide formation from aspartyl and Asn residues in cellular proteins, Int. J. Peptide Protein Res. 30, 808–821.

    Article  CAS  Google Scholar 

  182. Wright, H. T. (1991a) Nonenzymic deamidation of Asn and glutaminyl residues in proteins, Crit. Rev. Biochem. Mol. Biol. 26, 1–52.

    Article  PubMed  CAS  Google Scholar 

  183. Wright, H. T. (1991b) Sequence and structure determinants of the nonenzymic deamidation of asparagine and glutamine residues in proteins, Protein Eng. 4, 283–294.

    Article  PubMed  CAS  Google Scholar 

  184. Clarke, S., Stephenson, R. C. & Lowenson, J. D. (1992) Lability of asparagine and Asp residues in proteins and peptides, in stability of protein pharmaceuticals, part A: Chemical and physical pathways of protein degradation (Ahem T. J. & Manning M. C., eds) pp. 1–29, Plenum Press, New York.

    Google Scholar 

  185. Lowenson, J. D. & Clarke, S. (1991) Spontaneous degradation and enzymic repair of aspartyl and Asn residues in aging red cell proteins analyzed by computer simulation, Gerontology 37, 128–151.

    Article  PubMed  CAS  Google Scholar 

  186. Toney, K., Bateman, A., Gagnon, C. & Bennett, H. P. J. (1993) Aspartimide formation in the joining peptide sequence of porcine and mouse pro-opiomelanocortin, J. Biol. Chem.268, 1024–1031.

    PubMed  CAS  Google Scholar 

  187. Robinson, A. B. & Robinson, L. R. (1991) Distribution of glutamine and Asn residues and their near neighbors in peptides and proteins, Proc. Natl Acad. Sci. USA 88, 8880–8884.

    Article  PubMed  CAS  Google Scholar 

  188. Rogers, S. W. & Rechsteiner, M. (1988a) Degradation of structurally characterized proteins infected into HeLa cells. Tests of hypotheses, J. Biol. Chem. 263, 19833–19842.

    PubMed  CAS  Google Scholar 

  189. Rogers, S. W. & Rechsteiner, M. (1988b) Degradation of structurally characterized proteins infected into HeLa cells. Measurements, J. Biol. Chem. 263, 19843–19849.

    PubMed  CAS  Google Scholar 

  190. Rogers, S. W. & Rechsteiner, M. (1988c) Degradation of structurally characterized proteins infected into HeLa cells. Effects of intracellular location and the involvement of lysosomes, J. Biol. Chem. 263, 19850–19862.

    PubMed  CAS  Google Scholar 

  191. McFadden, P. N. & Clarke, S. (1982) Methylation of D-Aspresidues in red cells: A possible step in the repair of aged membrane proteins, Proc. Natl Acad. Sci. USA 79, 24602464.

    Article  Google Scholar 

  192. Clarke, S. (1985) Protein carboxyl methyltransferases: Two distinct classes of enzymes, Annu. Rev. Biochem. 54, 479–506.

    Article  PubMed  CAS  Google Scholar 

  193. Manna, C., del Piano, L., Galletti, P., van den Oetelaar, P. & Hoenders, H. J. (1987) Does protein carboxyl methyl transferase repair racemized Asp residues in eye lens proteins? Lens Res. 4, 295–308.

    CAS  Google Scholar 

  194. Lowenson, J. D. & Clarke, S. (1992) Recognition of D-aspar- tyl residues in polypeptides by the erythrocyte L-aspartyl/ D-aspartyl protein methyltransferase. Implications for the repair hypothesis, J. Biol. Chem. 267, 5985–5995.

    PubMed  CAS  Google Scholar 

  195. Manna, C., Galetti, P., Cucciolla, V. & Zappia, V. (1992) Age-related decline in 5-adenosylmethionine and protein methyl esterification levels in bovine lenses, Arch. Gerontol. Geriatr. Suppl. 3, 237–248.

    Article  CAS  Google Scholar 

  196. Miesbauer, L. R., Zhou, X., Yang, Z., Yang, Z., Sun, Y., Smith, D. L. & Smith, J. B. (1994) Post-translational modifications of water-soluble human lens crystallins from young adults, J. Biol. Chem. 269, 12494–12502.

    PubMed  CAS  Google Scholar 

  197. Emmons, T. & Takemoto, L. (1992) Age-dependent loss of the C-terminal amino acid from α-crystallin, Exp. Eye Res. 55, 551–554.

    Article  PubMed  CAS  Google Scholar 

  198. de Jong, W. W., van Kleef, F. S. M. & Bloemendal, H. (1974) Intracellular carboxy-terminal degradation of the aA chain of α-crystallin, Eur. J. Biochem. 48, 271–276.

    Article  PubMed  Google Scholar 

  199. van Kleef, F. S. M., Nijzink-Maas, M. J. C. M. & Hoenders, H. J. (1974) Intracellular degradation of α-crystallin, Eur. J. Biochem. 48, 563–570.

    Article  PubMed  Google Scholar 

  200. van Kleef, F. S. M., Willems-Thyssen, W. & Hoenders, H. J. (1976) Intracellular degradation and deamidation of a-crys- tallin subunits, Eur. J. Biochem. 66, 477–483.

    Article  PubMed  Google Scholar 

  201. Oliyai, C. & Borchardt, R. T. (1993) Chemical pathways of peptide degradation. IV. Pathways, kinetics and mechanism of degradation of an Asp residue in a model hexapeptide, Pharmacol. Res. 10, 95–102.

    Article  CAS  Google Scholar 

  202. Siezen, R. J. & Hoenders, H. J. (1979) The quaternary structure of bovine α-crystallin, Eur. J. Biochem. 96, 431–440.

    Article  PubMed  CAS  Google Scholar 

  203. Yoshida, H., Murachi, T. & Tsukahara, I. (1984) Limited proteolysis of bovine lens α-crystallin by calpain, a Ca2+-dependent cysteine proteinase, isolated from the same tissue, Biochim. Biophys. Acta 798, 252–259.

    Article  PubMed  CAS  Google Scholar 

  204. Yoshida, H., Yumoto, N., Tsukahara, I. & Murachi, T. (1986) The degradation of α-crystallin at its carboxyl-terminal portion by calpain in bovine lens, Invest. Ophthalmol. Vis. Sci. 27, 1269–1273.

    PubMed  CAS  Google Scholar 

  205. Yoshida, H., Murachi, T. & Tsukahara, I. (1985) Distribution of calpain I, calpain II, and calpastatin in bovine lens, Invest. Ophthalmol. Vis. Sci. 26, 953–956.

    PubMed  CAS  Google Scholar 

  206. Russo, G., Vincenti, D., Ragone, R., Stiuso, R & Colonna, G. (1992) Structural organization and stability of a thermoresistant domain generated by in vivo hydrolysis of the α-crystallin B chain from calf lens, Biochemistry 31, 9279–9287.

    Article  PubMed  CAS  Google Scholar 

  207. Srivastava, O. R, Srivastava, K. & Silney, C. (1994) Identification of origin of two polypeptides of 4 and 5 kDa isolated from human lens, Invest. Ophthalmol. 35, 207–214.

    CAS  Google Scholar 

  208. Kelley, M. J., David, L. L., Iwasaki, N., Wright, J. & Shearer, T. R. (1993) a-Crystallin chaperone activity is reduced by calpain II in vitro and in selenite cataract, J. Biol. Chem. 286, 18844–18849.

    Google Scholar 

  209. Takemoto, L., Emmons, T. & Horwitz, J. (1993) The C-terminal region of α-crystallin: involvement in protection against heat-induced denaturation, Biochem. J. 294, 435–438.

    PubMed  CAS  Google Scholar 

  210. Kleiman, N. J., Chiesa, R., Gawinowicz-Kolks, M. A. & Spector, A. (1988) Phosphorylation of β-crystallin B2 (ßBp) in the bovine lens, J. Biol. Chem. 263, 14978–14983.

    PubMed  CAS  Google Scholar 

  211. Chiesa, R., Gawinowicz-Kolks, M. A., Kleiman, N. J. & Spector, A. (1987) Identification of the specific phosphorylated Ser in the bovine a crystallin chain, Curr. Eye Res. 6, 539–543.

    Article  PubMed  CAS  Google Scholar 

  212. Voorter, C. E. M., de Haard-Hoekman, W. A., Roersma, E. S., Meyer, H. E., Bloemendal, H. & de Jong, W. W. (1989) The in vivo phosphorylation sites of bovine αB-crystallin, FEBS Lett. 259, 50–52.

    Article  PubMed  CAS  Google Scholar 

  213. Smith, J. B., Sun, Y., Smith, D. L. & Green, B. (1992) Identification of the post-translational modifications of bovine lens αB-crystallins by mass spectrometry, Protein Sci. 1, 601–608.

    Article  PubMed  CAS  Google Scholar 

  214. Spector, A., Chiesa, R., Sredy, J. & Gamer, W. (1985) cAMP- dependent phosphorylation of bovine lens α-crystallin, Proc. Natl Acad. Sci. USA 82, 4712–4716.

    Article  PubMed  CAS  Google Scholar 

  215. Takáts, A., Antoni, F., Faragö, A. & Kertész, P. (1978) Some properties of the cyclic AMP dependent protein kinase of epithelial cells and cortical fibers of bovine eye lens, Exp. Eye Res. 26, 389–397.

    Article  PubMed  Google Scholar 

  216. Kemp, B. E. & Pearson, R. B. (1990) Protein kinase recognition sequence motifs, Trends Biochem. Sci. 15, 342–346.

    Article  PubMed  CAS  Google Scholar 

  217. Vulliet, P. R., Hall, F. L., Mitchell, J. P. & Hardie, D. G. (1989) Identification of a novel proline-directed Ser /threonine protein kinase in rat pheochromocytoma, J. Biol. Chem. 264, 16292–19298.

    PubMed  CAS  Google Scholar 

  218. Chiesa, R. & Spector, A. (1989) The dephosphorylation of lens α-crystallin A chain, Biochem. Biophys. Res. Commun. 162, 1494–1501.

    Article  PubMed  CAS  Google Scholar 

  219. Augusteyn, R. C., Koretz, J. F. & Schurtenberger, P. (1989) The effect of phosphorylation on the stmcture of α-crystallin, Biochim. Biophys. Acta 999, 293–299.

    Article  PubMed  CAS  Google Scholar 

  220. Zhou, M., Lambert, H. & Landry, J. (1993) Transient activation of a distinct Ser protein kinase is responsible for 27-kDa heat-shock protein phosphorylation in mitogen-stimulated and heat-shocked cells, J. Biol. Chem. 268, 35–43.

    PubMed  CAS  Google Scholar 

  221. Guesdon, F., Freshney, N., Waller, R. J., Rawlinson, L. & Saklatvala (1993) Interleukin 1 and tumor necrosis factor stimulate two novel protein kinases that phosphorylate the heat-shock protein hsp27 and /2-casein, J. Biol. Chem. 268, 4236–4243.

    PubMed  CAS  Google Scholar 

  222. Chung, J., Kuo, C. J., Crabtree, G. R. & Blenis, J. (1992) Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases, Cell 69, 1227–1236.

    Article  PubMed  CAS  Google Scholar 

  223. Stevens V. J., Rouzer C. A., Monnier V. M. & Cerami, A. (1978) Diabetic cataract formation. Potential role of glycosylation of lens crystallins, Proc. Natl Acad. Sci. USA 75, 2918–2922.

    Article  PubMed  CAS  Google Scholar 

  224. Monnier V. M. & Cerami A. (1981) Nonenzymic browning in vivo: possible process of aging of long-lived proteins, Science 211, 491–493.

    Article  PubMed  CAS  Google Scholar 

  225. Perry, R. E., Swamy, M. S. & Abraham, E. C. (1987) Progressive changes in lens crystallin glycation and high-molecular mass aggregate formation leading to cataract development in streptozotocin-diabetic rats, Exp. Eye Res. 44, 269–282.

    Article  PubMed  CAS  Google Scholar 

  226. Luthra, M. & Balasubramanian, D. (1993) Nonenzymic glycation alters protein stmcture and stability, J. Biol. Chem. 288, 18119–18127.

    Google Scholar 

  227. Beswick, H. T. & Harding, J. J. (1987a) Conformational changes induced in lens α- and γ-crystallins by modification with glucose 6-phosphate, Biochem. J. 246, 761–769.

    PubMed  CAS  Google Scholar 

  228. Beswick, H. T. & Harding, J. J. (1987b) High-molecular-weight crystallin aggregate formation resulting from non-en- zymic carbamoylation of lens crystallins: Relevance to cataract formation, Exp. Eye Res. 45, 569–578.

    Article  PubMed  CAS  Google Scholar 

  229. Swamy, M. S., Tsai, C., Abraham, A. & Abraham, E. C. (1993) Glycation mediated lens crystallin aggregation and crosslinking by various sugars and sugar phosphates in vitro, Exp. Eye Res. 56, 177–185.

    Article  PubMed  CAS  Google Scholar 

  230. Harding, J. J. (1981) Changes in lens proteins in cataract, in Molecular and cellular biology of the eye lens (Bloemendal, G., ed.) pp. 327–365, John Wiley and Sons, New York.

    Google Scholar 

  231. Chiou, S.-H., Chylack, L. T. Jr, Tung, W. H. & Bunn, H. F. (1981) Nonenzymic glycosylation of bovine lens crystallin, J. Biol. Chem. 256, 5176–5180.

    PubMed  CAS  Google Scholar 

  232. Rao, G. N. & Cotlier, E. (1986) Free epsilon amino groups and 5-hdroxymethylfurfural contents in clear and cataractous human lenses, Invest. Ophthalmol. Vis. Sci. 27, 98–102.

    PubMed  CAS  Google Scholar 

  233. van Boekel, M. A. M. & Hoenders, H. J. (1992) In vivo glycation of bovine lens crystallin, Biochim. Biophys. Acta 1159, 99–102.

    Article  PubMed  Google Scholar 

  234. Slight, S. H Feather, M. S. & Ortwerth, B. J. (1990) Glycation of lens proteins by the oxidation products of ascorbic acid, Biochim. Biophys. Acta 1038, 367–374.

    Article  PubMed  CAS  Google Scholar 

  235. Prabhakaram, M. & Ortwerth, B. J. (1992) The glycation and cross-linking of isolated lens crystallins by ascorbic acid, Exp. Eye Res. 55, 451–459.

    Article  PubMed  CAS  Google Scholar 

  236. Kem, H. L. & Zolot, S. L. (1989) Transport of vitamin C in the lens, Curr. Eye Res. 6, 885–896.

    Google Scholar 

  237. Gamer M. H. & Spector A. (1980) Selective oxidation of cysteine and methionine in normal and senile cataractous lenses, Proc. Natl Acad. Sci. USA 77, 1274–1277.

    Article  Google Scholar 

  238. Ortwerth, B. J., Slight, S. H., Prabhakaram, M., Sun, Y. & Smith, J. B. (1992) Site-specific glycation of lens crystallins by ascorbic acid, Biochim. Biophys. Acta 1117, 207–215.

    Article  PubMed  CAS  Google Scholar 

  239. Kuck, J. F. R. Jr (1975) Composition of the lens, in Cataract and abnormalities of the lens (Bellows, J. G., ed.) pp. 69–96, Gmne and Stratton, New York.

    Google Scholar 

  240. Harding, J. J. & Rixon, K. C. (1980) Carbamoylation of lens proteins: a possible factor in cataractogenesis in some tropical countries, Exp. Eye Res. 31, 567–571.

    Article  PubMed  CAS  Google Scholar 

  241. van Heyningen, R. & Harding, J. J. (1986) Do aspirin-like analgesics protect against cataract? Lancet 1, 1111–1113.

    Article  PubMed  Google Scholar 

  242. Beswick, H. T. & Harding, J. J. (1984) Conformational changes induced in bovine lens α-crystallin by carbamoylation, Biochem. J. 223, 221–227.

    PubMed  CAS  Google Scholar 

  243. Qin, W., Smith, J. B. & Smith, D. L. (1992) Rates of carbamoylation of specific Lys residues in bovine a-cry stallins, J. Biol. Chem. 267, 26128–26133.

    PubMed  CAS  Google Scholar 

  244. Driessen, H. P. C., de Jong, W. W., Tesser, G. I. & Bloemendal, G. (1985) The mechanism of N-terminal acetylation of proteins, Crit. Rev. Biochem. 18, 281–325.

    Article  CAS  Google Scholar 

  245. Crompton, M., Rixon, K. C. & Harding, J. J. (1985) Aspirin prevents carbamoylation of soluble lens proteins and prevents cyanate-induced phase separation opacities in vitro: a possible mechanism by which aspirin could prevent cataract, Exp. Eye Res. 40, 297–311.

    Article  PubMed  CAS  Google Scholar 

  246. Rao, G. N., Lardis, M. P. & Cotlier, E. (1985) Acetylation of lens crystallins: a possible mechanism by which aspirin could prevent cataract formation, Biochem. Biophys. Res. Commun. 128, 1125–1132.

    Article  PubMed  CAS  Google Scholar 

  247. Huby, R. & Harding, J. J. (1988) Non-enzymic glycosylation (glycation) of lens proteins by galactose and protection by aspirin and reduced glutathione, Exp. Eye Res. 47, 53–59.

    Article  PubMed  CAS  Google Scholar 

  248. Rao, G. N. & Cotlier, E. (1988) Aspirin prevents the nonenzymic glycosylation and carbamoylation of the human eye lens crystallins in vitro, Biochem. Biophys. Res. Commun. 151, 991–996.

    Article  PubMed  CAS  Google Scholar 

  249. Blakytny, R. & Harding, J. J. (1992) Prevention of cataract in diabetic rats by aspirin, paracetamol (acetaminophen) and ibuprofen, Exp. Eye Res. 54, 509–518.

    Article  PubMed  CAS  Google Scholar 

  250. Harding, J. J. (1992) Pharmacological treatment strategies in age-related cataracts, Drugs & Ageing 2, 287–300.

    Article  CAS  Google Scholar 

  251. Hasan, A., Smith, J. B., Qin, W. & Smith, D. J. (1993) The reaction of bovine lens aA-crystallin with aspirin, Exp. Eye Res. 57, 29–35.

    Article  PubMed  CAS  Google Scholar 

  252. Ajiboye, R. & Harding, J. J. (1989) The non-enzymic glycosylation of bovine lens proteins by glucosamine and its inhibition by aspirin, ibuprofen and glutathione, Exp. Eye Res. 49, 31–41.

    Article  PubMed  CAS  Google Scholar 

  253. Roberts, K. A. & Harding, J. J. (1990) Ibuprofen, a putative anti-cataract drug, protects the lens against cyanate and galactose, Exp. Eye Res. 50, 157–164.

    Article  PubMed  CAS  Google Scholar 

  254. Williams, W. F. & Odom, J. D. (1986) Study of aldose reductase inhibition in intact lenses by 13C NMR spectroscopy, Science 233, 223–225.

    Article  PubMed  CAS  Google Scholar 

  255. Cheng, H.-M. & Chylack, L. T. Jr (1985) Lens metabolism, in The ocular lens (Maisel, H., ed.) pp. 223–264, Marcel Dekker, New York.

    Google Scholar 

  256. Augusteyn, R. C. (1981) Protein modification in cataract: Possible oxidative mechanisms, in Mechanisms of cataract formation in the human lens (Duncan, G., ed.) pp. 72–115, Academic Press, London.

    Google Scholar 

  257. Andley, U. P. (1987) Yearly review: Photodamage to the eye, Photochem. Photobiol. 46, 1057–1066.

    Article  PubMed  CAS  Google Scholar 

  258. van Haard, P. M. M., Kramps, J. A., Hoenders, H. J. & Wollensak, J. (1978) Development of non-disulphide covalent cross-links in nuclear cataractogenesis, Interdiscip. Top. Gerontol. 13, 212–224.

    Google Scholar 

  259. Bessems, G. J. H., Hoenders, H. J. & Wollensak, J. (1987) Non tryptophan fluorescence of crystallins from normal and cataractous human lenses, Invest. Ophthalmol. Vis. Sci. 28, 1157–1163.

    PubMed  CAS  Google Scholar 

  260. van Heyningen, R. (1973) Fluorescent compounds of the human lens, CIBA Symp. 19, 151.

    Google Scholar 

  261. Zigman, S. (1981) Photochemical mechanisms in cataract formation, in Mechanisms of cataract formation in the human lens (Duncan G., ed.) pp. 117–149. Academic Press, New York.

    Google Scholar 

  262. Dillon, J. (1985) Photochemical mechanisms in the lens, in The ocular lens (Maisei, H., ed.) pp. 349–366, Marcel Dekker, New York.

    Google Scholar 

  263. Zigman, S. (1985) Photobiology of the lens, in The ocular lens (Maisei, H., ed.) pp. 301–347, Marcel Dekker, New York.

    Google Scholar 

  264. Davies, K. J. A. (1986) Free Radicals Biol. Med. 2, 155–173.

    Article  CAS  Google Scholar 

  265. Davies, K. J. A., Lin, S. W. & Pacifici, R. E. (1987) Protein damage and degradation by oxygen radicals, J. Biol. Chem. 262, 9914–9920.

    PubMed  CAS  Google Scholar 

  266. Lerman, S. (1980) Radiant energy and the eye, McMillan Publishing Cooperation, New York.

    Google Scholar 

  267. Fleshman, K. R., Margolis, J. W., Fu, S. J. & Wagner, B. J. (1985) Age changes in bovine lens endopeptidase acitivity, Mech. Ageing Dev. 31, 37–47.

    Article  PubMed  CAS  Google Scholar 

  268. Taylor, A. & Davies, K. J. A. (1987) Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens, Free Radical Biol. Med. 3, 371–377.

    Article  CAS  Google Scholar 

  269. Carmichael, P. L. & Hipkiss, A. R. (1989) Age-related changes in proteolysis of aberrant crystallin in bovine lens cell-free preparations, Mech. Ageing Dev. 50, 37–48.

    Article  PubMed  CAS  Google Scholar 

  270. Garland, D., Zigler, J. S. Jr & Kinoshita, J. (1986) Structural changes in bovine lens crystallins induced by ascorbate, metal, and oxygen, Arch. Biochem. Biophys. 251, 771–776.

    Article  PubMed  CAS  Google Scholar 

  271. McDermott, M. J., Chiesa, R. & Spector, A. (1988) Fe2+ oxidation of α-crystallin produces a 43000 Da aggregate composed of A and B chains cross-linked by non-reducible covalent bonds, Biochem. Biophys. Res. Commun. 157, 626–631.

    Article  PubMed  CAS  Google Scholar 

  272. McDermott, M. J., Chiesa, R. & Spector, A. (1989) Purification of a 43000 Dalton aggregate generated from α-crystallin, Curr. Eye Res. 8, 771–779.

    Article  PubMed  CAS  Google Scholar 

  273. Roy, D., Dillon, J., Wada, E., Chaney, W. G. & Spector, A. (1984) Non-disulfide polymerization of α- and β-crystallins in the human lens, Proc. Natl Acad. Sci. USA 81, 2878–2881.

    Article  PubMed  CAS  Google Scholar 

  274. Spector, A., Gamer, M. H., Gamer, W. H., Roy, D., Farnsworth, P & Shyne, S. (1979) An extrinsic membrane polypeptide associated with high molecular mass protein aggregates in human cataract, Science 204, 1323–1326.

    Article  PubMed  CAS  Google Scholar 

  275. Spector, A. (1984) The search for a solution to senile cataracts, Invest. Ophthal. Vis. Sci. 25, 130–146.

    PubMed  CAS  Google Scholar 

  276. Balasubramanian, D., Du X. & Zigler J. S. Jr (1990) The reaction of singlet oxygen with proteins, with special reference to crystallins, Photochem. Photobiol. 52, 761–768.

    Article  PubMed  CAS  Google Scholar 

  277. Guptasarma, P. & Balasubramanian, D. (1992) Hydroxyl radical mediated damage to proteins, with special reference to the crystallins, Biochemistry 31, 4296–4303.

    Article  PubMed  CAS  Google Scholar 

  278. Andley, U. P., Sutherland, P., Liang, J. N. & Chakrabarti, B. (1982) Changes in tertiary stmcture of calflens α-crystallin by near-UV irradiation: role of hydrogen peroxide, Photochem. Photobiol. 40, 343–349.

    Article  Google Scholar 

  279. McDermott, M. J., Chiesa, R., Roberts, J. E. & Dillon, J. (1991) Photooxidation of specific residues in α-crystallin polypeptides, Biochemistry 30, 8653–8660.

    Article  PubMed  CAS  Google Scholar 

  280. Dillon, J., Chiesa, R., Wang, R.-H. & McDermott, M. (1993) Molecular changes during the photooxidation of α-crystallin in the presence of uroporphyrin, Photochem. Photobiol. 57, 526–530.

    Article  PubMed  CAS  Google Scholar 

  281. Takemoto, L., Horwitz, J. & Emmons, T. (1992) Oxidation of the N-terminal methionine of lens a A crystallin, Curr. Eye Res. 11, 651–655.

    Article  PubMed  CAS  Google Scholar 

  282. Augusteyn, R. C., Ghiggino, K. P. & Putilina, T. (1993) Studies on the location of aromatic amino acids in α-crystallin, Biochim. Biophys. Acta 1162, 61–71.

    Article  PubMed  CAS  Google Scholar 

  283. Dillon, J., Chiesa, R. & Spector, A. (1987) The photochemistry of specific Trp residues in proteins as analyzed by the fluorescent scanning of tryptic peptide maps, Photochem. Photobiol. 45, 147–150.

    Article  PubMed  CAS  Google Scholar 

  284. Borkman, R. F., Douhal, A. & Yoshihara, K. (1993) Picosec ond fluorescence decay in photolyzed lens protein α-crystallin, Biochemistry 32, 4787–4792.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 FEBS

About this chapter

Cite this chapter

Groenen, P.J.T.A., Merck, K.B., De Jong, W.W., Bloemendal, H. (1994). Structure and modifications of the junior chaperone α-crystallin. In: EJB Reviews 1994. EJB Reviews 1994, vol 1994. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79502-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79502-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58830-6

  • Online ISBN: 978-3-642-79502-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics