Skip to main content

Unlinking of DNA by Topoisomerases During DNA Replication

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 9))

Abstract

The double-helical structure of DNA first described by Watson and Crick suggested immediately a mechanism for DNA replication (Watson and Crick 1953a,b). The two strands of the double helix need to unpair, after which they could serve as a template for the synthesis of complementary strands. The plectonemic, or interwound, nature of the double helix imposes a strict requirement on the mechanism of replication. The parental strands must be unlinked for the separation of daughter chromosomes to occur. Watson and Crick recognized that the problem was difficult, but “not insuperable” (Watson and Crick 1953a). It was difficult enough, however, to lead some early theorists to solutions involving breakage at every 1/2 turn of the helix during replication (Delbrück 1954) or a paranemic (side-by-side) structure for DNA instead of the plectonemic Watson and Crick model (Rodley et al. 1976; Pohl and Roberts 1978; Crick et al. 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DE, Shekhtman EM, Zechiedrich EL, Schmid MB, Cozzarelli NR (1992) The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71(2):277–288

    Article  PubMed  CAS  Google Scholar 

  • Baker TA, Wickner SH (1992) Genetics and enzymology of DNA replication in Escherichia coli. Annu Rev Genet 447-477

    Google Scholar 

  • Baker TA, Funneil BE, Kornberg A (1987) Helicase action of dnaB protein during replication from the Escherichia coli chromosomal origin in vitro. J Biol Chem 262:6877

    PubMed  CAS  Google Scholar 

  • Bates AD, Maxwell A (1993) DNA topology. Oxford University Press, New York

    Google Scholar 

  • Bird R, Lark K (1970) Chromosome replication in Escherichia coli 15T-at different growth rates: rate of replication of the chromosome and the rate of formation of small pieces. J Mol Biol 49:343–366

    Article  PubMed  CAS  Google Scholar 

  • Bliska JB, Cozzarelli NR (1987) Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. J Mol Biol 194:205–218

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield VA (1991) Condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers 31:1471–1481

    Article  PubMed  CAS  Google Scholar 

  • Breyne P, Vanmontagu M, Gheysen G (1994) The role of scaffold attachment regions in the structural and functional organization of plant chromatin. Transgenic Res 3(3):195–202

    Article  PubMed  CAS  Google Scholar 

  • Brown PO, Cozzarelli NR (1981) Catenation and knotting of duplex DNA by type 1 topoisomerases: a mechanistic parallel with type 2 topoisomerases. Proc Natl Acad Sci USA 78:843–847

    Article  PubMed  CAS  Google Scholar 

  • Cairns J (1963) The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol 6:208–213

    Article  PubMed  CAS  Google Scholar 

  • Cayley S, Lewis BA, Guttman HJ, Record MTJ (1991) Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity implications for protein-DNA interactions in vivo. J Mol Biol 222:281–300

    Article  PubMed  CAS  Google Scholar 

  • Champoux JJ (1990) Mechanistic aspects of type I topoisomerases. In: Cozzarelli NR, Wang JC (eds) DNA topology and its biological effects. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 217–242

    Google Scholar 

  • Champoux JJ, Been MD (1980) Topoisomerases and the swivel problem. In: Alberts B (ed) Mechanistic studies of DNA replication and genetic recombination: ICN-UCLA symposia on molecular and cellular biology. Academic Press, New York, pp 809–815

    Google Scholar 

  • Champoux JJ, Dulbecco R (1972) An activity from mammalian cells that untwists superhelical DNA — a possible swivel for DNA replication. Proc Natl Acad Sci USA 69:143–146

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Liu L (1994) DNA topoisomerases — essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 191-218

    Google Scholar 

  • Cozzarelli NR, Boles TC, White JH (1990) Primer on the topology and geometry of DNA supercoiling. In: Cozzarelli NR, Wang JC (eds) DNA topology and its biological effects. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 139–184

    Google Scholar 

  • Crick FH, Wang JC, Bauer WR (1979) Is DNA really a double helix? J Mol Biol 129:449–457

    Article  PubMed  CAS  Google Scholar 

  • Dayn A, Malkhosyan S, Duzhy D, Lyamichev V, Panchenko Y, Mirkin S (1991) Formation of (dA-dT)n cruciform in E. coli cells under different environmental conditions. J Bacteriol 173:2658

    PubMed  CAS  Google Scholar 

  • Debyzer Z, Tabor S, Richardson C (1994) Coordination of leading and lagging strand synthesis at the replication fork of bacteriophage T7. Cell 77(1): 157–166

    Article  Google Scholar 

  • Delbrück M (1954) On the replication of desoxyribonucleic acid (DNA). Proc Natl Acad Sci 40:783–788

    Article  PubMed  Google Scholar 

  • Delius H, Worcel A (1973) Electron microscopic studies on the folded chromosome of Escherichia coli. Cold Spring Harbor Symp Quant Biol 38:53–58

    Google Scholar 

  • DiGate RJ, Marians KJ (1988) Identification of a potent decatenating enzyme from Escherichia coli. J Biol Chem 263(26):13366–13373

    PubMed  CAS  Google Scholar 

  • DiNardo S, Voelkel K, Sternglanz R (1984) DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci USA 81:2616–2620

    Article  PubMed  CAS  Google Scholar 

  • Downes S, Mullinger A, Johnson R (1991) Inhibitors of DNA topoisomerase II prevent chromatid separation in mammalian cells but do not prevent exit from mitosis. Proc Natl Acad Sci USA 88:8895–8899

    Article  PubMed  CAS  Google Scholar 

  • Drlica K (1987) The nucleoid. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Drlica K (1992) Control of bacterial DNA supercoiling. Mol Microbiol 6(4):425–433

    Article  PubMed  CAS  Google Scholar 

  • Drolet M, Bi X, Liu L (1994) Hypernegative supercoiling of the DNA template during transcription elongation in vitro. J Biol Chem 269(3):2068–2074

    PubMed  CAS  Google Scholar 

  • Filutowicz M, Jonczyk P (1983) The gyrB gene product functions in both initiation and chain polymerization of Escherichia coli chromosome replication: suppression of the initiation deficiency in gyrB-ts mutants by a class of rpoB mutations. Mol Gen Genet 191:282–287

    Article  PubMed  CAS  Google Scholar 

  • Freeman LA, Garrard WT (1992) DNA supercoiling in chromatin structure and gene expression. Crit Rev Euk Gene Expression 2(2):165–209

    CAS  Google Scholar 

  • Fuke M, Inselburg J (1972) Electron microscopic studies of replicating and catenated colicin factor E1 DNA isolated from minicells. Proc Natl Acad Sci USA 69(1):89–92

    Article  PubMed  CAS  Google Scholar 

  • Funabiki H, Hagan I, Uzawa S, Yanagida M (1993) Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 121(5):961–976

    Article  PubMed  CAS  Google Scholar 

  • Funnell BE, Baker TA, Kornberg A (1986) Complete enzymatic replication of plasmids containing the origin of the Escherichia coli chromosome. J Biol Chem 261:5616–5624

    PubMed  CAS  Google Scholar 

  • Germond JE, Hirt B, Oudet P, Gross-Bellard M, Chambon P (1975) Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci USA 72(5): 1843–1847

    Article  PubMed  CAS  Google Scholar 

  • Goebel W, Kreft J (1972) Accumulation of replicative intermediates and catenated forms of the colicinogenic factor E1 in E. coli during the replication at elevated temperatures. Biochem Biophys Res Commun 49(6):1699–1709

    Article  PubMed  CAS  Google Scholar 

  • Goto T, Laipis P, Wang JC (1984) The purification and characterization of DNA topoisomerases I and II of the yeast Saccharomyces cerevisiae. J Biol Chem 259:10422–10429

    PubMed  CAS  Google Scholar 

  • Hiasa H, Marians K (1994) Topoisomerase IV can support oriC DNA replication in vitro. J Biol Chem 269(23):16371–16375

    PubMed  CAS  Google Scholar 

  • Hiasa H, Digate R, Marians K (1994) Decatenating activity of Eschericia coli DNA gyrase and topoisomerase-I and topoisomerase-III during oriC and pBR322 DNA replication in vitro. J Biol Chem 269(3):2093–2099

    PubMed  CAS  Google Scholar 

  • Higgins NP, Peebles CL, Sugino A, Cozzarelli NR (1978) Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity. Proc Natl Acad Sci USA 75:1737–1773

    Article  Google Scholar 

  • Hildebrandt E, Cozzarelli NR (1995) The effective concentration of DNA in Escherichia coli. (in preparation)

    Google Scholar 

  • Hiraga S (1992) Chromosome and plasmid partitioning in Escherichia coli. Annu Rev Biochem 283-306

    Google Scholar 

  • Holm C, Goto T, Wang JC, Botstein D (1985) DNA topoisomerase II is required at the time of mitosis in yeast. Cell 41:553–563

    Article  PubMed  CAS  Google Scholar 

  • Howard M, Neece S, Matson S, Kreuzer K (1994) Disruption of a topoisomerase-DNA cleavage complex by a DNA helicase. (in press)

    Google Scholar 

  • Huang W (1993) Multiple DNA gyrase-like genes in eubacteria. In: Andoh T, Ikeda H, Oguro M (eds) Molecular biology of DNA topoisomerases and its application to chemotherapy. CRC Press, Boca Raton, pp 39–48

    Google Scholar 

  • Ishimi Y, Sugasawa K, Hanaoka F, Eki T, Hurwitz J (1992) Topoisomerase II plays an essential role as a swivelase in the late stage of SV40 chromosome replication in vitro. J Biol Chem 267(1):462–486

    PubMed  CAS  Google Scholar 

  • Jacob F, Brenner S, Cuzin F (1963) Cold Spring Harbor Symp Quant Biol 28:329–348

    CAS  Google Scholar 

  • Jaenisch R, Levine A (1973) DNA replication of SV40-infected cells. J Mol Biol 73:199–212

    Article  PubMed  CAS  Google Scholar 

  • Kanaar R, Cozzarelli NR (1992) Roles of supercoiled DNA structure in DNA transactions. Curr Opin Struct Biol 2:369–379

    Article  CAS  Google Scholar 

  • Kato J-i, Nishimura Y, Yamada M, Suzuki H, Hirota Y (1988) Gene organization in the region containing a new gene involved in chromosome partition in Escherichia coli. J Bacteriol 170(9):3967–3977

    PubMed  CAS  Google Scholar 

  • Kato J-i, Nishimura Y, Imamura R, Niki H, Hiraga S, Susuki H (1990) New topoisomerase essential for chromosome segregation in Escherichia coli. Cell 63:393–404

    Article  PubMed  CAS  Google Scholar 

  • Kato J-i, Suzuki H, Ikeda H (1992) Purification and characterization of DNA topoisomerase IV in Escherichia coli. J Biol Chem 267(36):25676–25684

    PubMed  CAS  Google Scholar 

  • Kavenoff R, Ryder OA (1976) Electron microscopy of membrane-associated folded chromosomes of Escherichia coli. Chromosoma 55:13–25

    Article  PubMed  CAS  Google Scholar 

  • Kelly T (1991) DNA replication in mammalian cells: insights from the SV40 model system. In: Altieri L (ed) The Harvey lectures. Wiley-Liss, New York, pp 173–188

    Google Scholar 

  • Kim RA, Wang JC (1989) Function of DNA topoisomerases as replication swivels in Saccharomyces cerevisiae. J Mol Biol 208:257–267

    Article  PubMed  CAS  Google Scholar 

  • Kim RA, Wang JC (1992) Identification of the yeast TOP3 gene product as a single strand-specific DNA topoisomerase. J Biol Chem 267(24):17178–17185

    PubMed  CAS  Google Scholar 

  • Kirkegaard K, Wang JC (1978) Escherichia coli DNA topoisomerase I catalyzed linking of single-stranded rings of complementary base sequences. Nucleic Acids Res 5:3811–3820

    Article  PubMed  CAS  Google Scholar 

  • Klevan L, Wang JC (1980) Deoxyribonucleic acid gyrase-deoxyribonucleic acid complex containing 140 base pairs of deoxyribonucleic acid and an alpha 2 beta 2 protein core. Biochemistry 19:5229–5234

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A, Baker TA (1992) DNA replication. WH Freeman, New York

    Google Scholar 

  • Krasnow MA, Cozzarelli NR (1982) Catenation of DNA rings by topoisomerases: mechanism of control by spermidine. J Biol Chem 257:2687–2693

    PubMed  CAS  Google Scholar 

  • Kreuzer KN, Cozzarelli NR (1979) Escherichia coli mutants thermosensitive for deoxyribonucleic acid gyrase subunit A: effects on deoxyribonucleic acid replication, transcription, and bacteriophage growth. J Bacteriol 140:424–435

    PubMed  CAS  Google Scholar 

  • Kreuzer KN, Cozzarelli NR (1980) Formation and resolution of DNA catenanes by DNA gyrase. Cell 20:245–254

    Article  PubMed  CAS  Google Scholar 

  • Kupersztoch Y, Helinski D (1973) A catenated DNA molecule as an intermediate in the replication of the resistance factor R6K in Escherichia coli. Biochem Biophys Res Commun 54(4):1451–1459

    Article  PubMed  CAS  Google Scholar 

  • Lee MP, Brown SD, Chen A, Hsieh TS (1993) DNA topoisomerase-1 is essential in Drosophila melanogaster. Proc Natl Acad Sci USA 90(14):6656–6660

    Article  PubMed  CAS  Google Scholar 

  • Levinthal C, Crane HR (1956) On the unwinding of DNA. Proc Natl Acad Sci USA 42:436–438

    Article  PubMed  CAS  Google Scholar 

  • Li JJ, Kelly TJ (1984) Simian virus 40 DNA replication in vitro. Proc Natl Acad Sci USA 81:6973–6977

    Article  PubMed  CAS  Google Scholar 

  • Lilley DM (1986) DNA supercoiling and DNA structure. Biochem Soc Trans 14:211–213

    PubMed  CAS  Google Scholar 

  • Luttinger AL, Springer AL, Schmid MB (1991) A cluster of genes that affects nucleoid segregation in Salmonella typhimurium. New Biol 3(7):687–697

    PubMed  CAS  Google Scholar 

  • Lydersen BK, Pettijohn DE (1977) Interactions stabilizing DNA tertiary structure in the Escherichia coli chromosome investigated with ionizing radiation. Chromosoma 62:199–215

    Article  PubMed  CAS  Google Scholar 

  • Marians KJ (1987) DNA gyrase-catalyzed decatenation of multiply linked DNA dimers. J Biol Chem 262:10362–10368

    PubMed  CAS  Google Scholar 

  • Marians K (ed) (1992) Prokaryotic DNA replication. Annu Rev Biochem

    Google Scholar 

  • McClellan J, Boublikova P, Palecek E, Lilley D (1990) Superhelical torsion in cellular DNA responds directly to enironmental and genetic factors. Proc Natl Acad Sci USA 87:8373

    Article  PubMed  CAS  Google Scholar 

  • McHenry C (1991) DNA Polymerase III holoenzyme: components, structure, and mechanism of a true replicative complex. J Biol Chem 266(29):19127–19130

    PubMed  CAS  Google Scholar 

  • Minden SJ, Mok M, Marians KJ (1987) Studies on the replication of pBR322 DNA in vitro with purified proteins. In: McMacken R, Kelly TJ (eds) DNA replication and recombination, UCLA symposia on molecular and cellular biology. Alan R Liss, New York, pp 247–263

    Google Scholar 

  • Minton AP (1981) Excluded volume as a determinant of macromolecular structure and reactivity. Biopolymers 20:2093–2120

    Article  CAS  Google Scholar 

  • Mizuuchi K, Geliert M, Nash HA (1978) Involvement of supertwisted DNA in integrative recombination of bacteriophage lambda. J Mol Biol 121:375–392

    Article  PubMed  CAS  Google Scholar 

  • Morrison A, Higgins NP, Cozzarelli NR (1980) Interaction between DNA gyrase and its cleavage site on DNA. J Biol Chem 255:2211–2219

    PubMed  CAS  Google Scholar 

  • Munson BR, Hucul JA, Maier PG, Krajewski CA, Helmstetter CE (1987) E. coli minichromosome replication in vitro and in vivo: comparative analyses of replication intermediates. Biochim Biophys Acta 910:11–20

    PubMed  CAS  Google Scholar 

  • Nossal N (1992) Protein-protein interactions at a DNA replication fork: bacteriophage T4 as a model. FASEB J 6:871–878

    PubMed  CAS  Google Scholar 

  • Novick R, Smith K, Sheehy R, Murphy E (1973) A catenated intermediate in plasmid replication. Biochem Biophys Res Commun 54(4):1460–1469

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell M (1992) Accessory protein function in the DNA polymerase holoenzyme from E. coli. BioEssays 14(2):105–111

    Article  PubMed  Google Scholar 

  • Page B, Snyder M (1993) Chromosome segregation in yeast. Annu Rev Microbiol 47:231–261

    Article  PubMed  CAS  Google Scholar 

  • Peng H, Marians K (1993) Decatenation activity of topoisomerase IV during oriC and pBR322 replication in vitro. Proc Natl Acad Sci USA 90(18):8571–8575

    Article  PubMed  CAS  Google Scholar 

  • Pohl WF, Roberts GW (1978) Topological considerations in the theory of replication of DNA. J Math Biol 6:383–402

    Article  PubMed  CAS  Google Scholar 

  • Raji A, Zabel DJ, Laufer CS, Depew RE (1985) Genetic analysis of mutations that compensate for loss of Escherichia coli DNA topoisomerase I. J Bacteriol 162(3):1173–1179

    PubMed  CAS  Google Scholar 

  • Reece RJ, Maxwell A (1991) DNA gyrase: structure and function. Crit Rev Biochem Mol Biol. CRC Press, Boca Raton, pp 335–375

    Google Scholar 

  • Roberge M, Gasser S (1992) DNA loops: structural and functional properties of scaffold-attached regions. Mol Microbiol 6(4):419–423

    Article  PubMed  CAS  Google Scholar 

  • Roca J, Wang J (1994) DNA transport by a type II DNA topoisomerase — evidence in favor of a two-gate mechanism. Cell 77(5):609–616

    Article  PubMed  CAS  Google Scholar 

  • Rodley GA, Scobie RS, Bates RHT, Lewitt RM (1976) A possible conformation for double-stranded polynucleotides. Proc Natl Acad Sci USA 75:4092–4096

    Google Scholar 

  • Rothfield LI (1994) Bacterial chromosome segregation. Cell 77:963–966

    Article  PubMed  CAS  Google Scholar 

  • Schmid MB, Sawitzke JA (1993) Multiple bacterial topoisomerases-specialization or redundancy? Bioessays 15(7):445–449

    Article  PubMed  CAS  Google Scholar 

  • Shekhtman EM, Wasserman SA, Solomon MJ, Cozzarelli NR (1993) Stereostructure of replicative DNA catenanes from eukaryotic cells. New J Chem 8:757–763

    Google Scholar 

  • Shen LL (1993) Molecular mechanism of DNA gyrase inhibition by quinolone antibacterial agents. In: Andoh T, Ikeda H, Oguro M (ed) Molecular biology of DNA topoisomerases and its application to chemotherapy. CRC Press, Boca Raton

    Google Scholar 

  • Shin C-G, Snapka R (1990) Patterns of strongly protein-associated simian virus 40 DNA replication intermediates resulting from exposures to specific topoisomerase poisons. Biochemistry 29:10934–10939

    Article  PubMed  CAS  Google Scholar 

  • Sinden R, Pettijohn D (1981) Chromosomes in living cells are segregated into domains of supercoiling. Proc Natl Acad Sci USA 78:224–228

    Article  PubMed  CAS  Google Scholar 

  • Sinden RR, Carlson JO, Pettijohn DE (1980) Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: analogous measurements in insect and human cells. Cell 21:773–783

    Article  PubMed  CAS  Google Scholar 

  • Sinha N, Morris C, Alberts B (1980) Efficient in vitro replication of double-stranded DNA templates by a purified t4 bacteriophage replication system. J Biol Chem 225:4290–4303

    Google Scholar 

  • Skarstad K, Boye E, Steen HB (1986) Timing of initiation of chromosome replication in individual Escherichia coli cells. EMBO J 5:1711–1717

    PubMed  CAS  Google Scholar 

  • Snapka RM, Permana PA (1993) SV40 DNA replication intermediates: analysis of drugs which target mammalian DNA replication. BioEssays 15(2): 121–127

    Article  PubMed  CAS  Google Scholar 

  • Snapka RM, Powelson MA, Strayer JM (1988) Swiveling and decatenation of replicating simian virus 40 genomes in vivo. Mol Cell Biol 8(2):515–521

    PubMed  CAS  Google Scholar 

  • Spell R, Holm C (1994) Nature and distribution of chromosomal intertwinings in Saccharomyces cerevisiae. Mol Cell Biol 14(2):1465–1476

    PubMed  CAS  Google Scholar 

  • Sternglanz R, DiNardo S, Voelkel KA, Nishimura Y, Y. H, Becherer K, Zumstein L, Wang JC (1981) Mutations in the gene coding for Escherichia coli DNA topoisomerase I affect transcription and transposition. Proc Natl Acad Sci USA 78:2747–2751

    Article  PubMed  CAS  Google Scholar 

  • Sugino A, Cozzarelli NR (1980) The intrinsic ATPase of DNA gyrase. J Biol Chem 255:6299–6306

    PubMed  CAS  Google Scholar 

  • Sundin O, Varshavsky A (1980) Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell 21:103–114

    Article  PubMed  CAS  Google Scholar 

  • Thornton M, Armitage M, Maxwell A, Dosanjh B, Howells AJ, Norris V, Sigee DC (1994) Immunogold localization of GyrA and GyrB proteins in Escherichia coli. Microbiology 140:2371–2382

    Article  PubMed  CAS  Google Scholar 

  • Tse Y, Wang JC (1980) E. coli and M. luteus DNA topoisomerase I can catalyze catenation or decatenation of double-stranded DNA rings. Cell 22:269–276

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Yanagida M (1984) Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J 3:1737–1744

    PubMed  CAS  Google Scholar 

  • Uemura T, Yanagida M (1986) Mitotic spindle pulls but fails to separate chromosomes in type II DNA topoisomerase mutants: uncoordinated mitosis. EMBO J 5:1003–1010

    PubMed  CAS  Google Scholar 

  • Varshavsky A, Sundin O, Ozkaynak E, Pan R, Solomon M, Snapka R (1983) Final stages of DNA replication: multiply intertwined catenated dimers as SV40 segregation intermediates. In: Cozzarelli NR (ed) Mechanisms of DNA replication and recombination. UCLA symposia on molecular and cellular biology. Alan R. Liss, New York, pp 463–494

    Google Scholar 

  • Vologodskii AV, Cozzarelli NR (1993) Monte Carlo analysis of the conformation of DNA catenanes. J Mol Biol 232:1130–1140

    Article  PubMed  CAS  Google Scholar 

  • Vologodskii AV, Cozzarelli NR (1994a) Conformational and thermodynamic properties of supercoiled DNA. Annu Rev Biophys Biomol Struct 23:609–643

    Article  PubMed  CAS  Google Scholar 

  • Vologodskii AV, Cozzarelli NR (1994b) Supercoiling, knotting, looping, and other large-scale conformational properties of DNA. Curr Opin Struct Biol 4:372–375

    Article  CAS  Google Scholar 

  • Vologodskii AV, Levene SD, Klenin KV, Frank-Kamenetskii MD, Cozzarelli NR (1992) Conformational and thermodynamic properties of supercoiled DNA. J Mol Biol 227(4): 1224–1243

    Article  PubMed  CAS  Google Scholar 

  • Waga S, Stillman B (1994) Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369:207–212

    Article  PubMed  CAS  Google Scholar 

  • Wang JC (1979) DNA: bihelical structure, supercoiling, and relaxation. Cold Spring Harbor Symp Quant Biol 43:29–33

    PubMed  CAS  Google Scholar 

  • Wang JC (1991) DNA topoisomerases: why so many? J Biol Chem 266(11): 6659–6662

    PubMed  CAS  Google Scholar 

  • Wang JC (1992) Template topology and transcription. In: Wang JC (ed) Transcriptional regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor MA, pp 1253–1269

    Google Scholar 

  • Wang JC, Liu LF (1990) DNA replication: topological aspects and the roles of DNA topoisomerases. In: Cozzarelli NR, Wang JC (eds) DNA topology and its biological effects. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 321–340

    Google Scholar 

  • Wasserman SA, Cozzarelli NR (1986) Biochemical topology: applications to DNA recombination and replication. Science 232:951–960

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953a) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–966

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953b) The structure of DNA. Nature 171:123–131

    Article  Google Scholar 

  • Weaver DT, Fields-Berry SC, DePamphilis ML (1985) The termination region for SV40 DNA replication directs the mode of separation for the two sibling molecules. Cell 41:565–575

    Article  PubMed  CAS  Google Scholar 

  • White JH (1989) An introduction to the geometry and topology of DNA structure. In: Waterman MS (ed) Mathematical methods for DNA sequences. CRC Press, Boca Raton, FL, pp 225–253

    Google Scholar 

  • Worcel A, Burgi E (1972) On the structure of the folded chromosome of Escherichia coli. J Mol Biol 71:127–147.

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Zechner E, Marians K (1992) Coordinated leading-strand and lagging-strand synthesis at the Escherichia coli DNA replication fork. 1. Multiple effectors act to modulate Okazaki fragment size. J Biol Chem 267(6):4030–4044

    PubMed  CAS  Google Scholar 

  • Wu H, Lau K, Liu L (1992) Interlocking of plasmid DNAs due to lac repressoroperator interaction. J Mol Biol 228(4):1104–1114

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Wold MS, Li JJ, Kelly TJ, Liu LF (1987) Roles of DNA topoisomerases in simian virus DNA replication in vitro. Proc Natl Acad Sci USA 84:950–954

    Article  PubMed  CAS  Google Scholar 

  • Zacharias W, Jaworski A, Larson JE, Wells RD (1988) The B-to Z-DNA equilibrium in vivo is perturbed by biological processes. Proc Natl Acad Sci 85:7069

    Article  PubMed  CAS  Google Scholar 

  • Zechiedrich EL, Osheroff N (1990) Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J 9(13):4555–4562

    PubMed  CAS  Google Scholar 

  • Zimmerman SB, Harrison B (1987) Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proc Natl Acad Sci USA 84:1871–1875

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman SB, Minton AP (1993) Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct 22:27–65

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ullsperger, C.J., Vologodskii, A.V., Cozzarelli, N.R. (1995). Unlinking of DNA by Topoisomerases During DNA Replication. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79488-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79488-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79490-2

  • Online ISBN: 978-3-642-79488-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics