Skip to main content

Triple-Stranded DNA

  • Chapter

Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC,volume 9)

Abstract

The molecular biology of DNA is determined to a great extent by the chemical properties of its constitutive polynucleotide chains and, in particular, by the stability of the different complexes to which they can give rise. Most frequently, DNA is found in the form of an antiparallel doublestranded association but the formation of DNA complexes containing either three or four strands has also been extensively reported in the literature. The formation of a triple-stranded nucleic acid was first reported in 1957 in the case of the RNA triplex U(A · U) (Felsenfeld et al. 1957) and it was followed by the demonstration that the RNA homopolymers polyI and polyA could also form the triple-stranded helixes I(I · I) and I(A · I) (Rich 1958a,b). In the following decade, formation of triple-stranded conformations was also demonstrated for a variety of RNA and DNA homopolymers, as well as for RNA-DNA hybrids. Recently, triple-stranded DNA has received renewed attention. Most of the recent interest in triple-stranded DNA came after the discovery that DNA triplexes could also be intramolecular. In the case of an intramolecular triplex, the third strand, which associates to the double-stranded DNA fragment, is donated by the same DNA molecule. Intramolecular triplexes are therefore a source of DNA structural polymorphism, which adds to the known capability of the DNA molecule to exist under structurally different double-stranded conformations. On the other hand, in the case of an intermolecular triplex, the third strand is donated by a different DNA or RNA molecule, normally a singlestranded oligomer. Intermolecular triplexes provide a means for the specific recognition of double-stranded DNA by single-stranded DNA or RNA molecules. Here, after a brief introductory summary about the general aspects underlying the formation of triple-stranded DNA, we will review the recent progress on the study of the structural and functional properties of intra- and intermolecular DNA triplexes.

Keywords

  • Triple Helix
  • Triplex Formation
  • Base Triad
  • Purine Strand
  • Nuclear Magnetic Resonance Structural Study

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-79488-9_1
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-79488-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnott S, Bond PJ (1973) Structures for poly(U) · poly(A) · poly(U) triple stranded polynucleotides. Nat New Biol 244:99–101

    PubMed  CAS  CrossRef  Google Scholar 

  • Arnott S, Seising E (1991) Structures for the polynucleotide complexes poly (dA)— poly(dT) and poly(dT)-poly(dA)-poly(dT). J Mol Biol 88:509–521

    CrossRef  Google Scholar 

  • Arnott S, Bond PJ, Seising E, Smith PJC (1976) Models of triple-stranded polynucleotides with optimised stereochemistry. Nucleic Acids Res 3:2459–2470

    PubMed  CAS  Google Scholar 

  • Baran N, Lapidot A, Manor H (1991) Formation of DNA triplexes accounts for arrests of DNA synthesis at d(TC)n and d(GA)n tracts. Proc Natl Acad Sci USA 88:507–511

    PubMed  CAS  CrossRef  Google Scholar 

  • Beal PA, Dervan PB (1991) Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251:1360–1363

    PubMed  CAS  CrossRef  Google Scholar 

  • Belotserkovskii BP, Veselkov AG, Filippov SA, Dobrynin VN, Mirkin SM, Frank-Kamenetskii MD (1990) Formation of intramolecular triplex in homopurine-homopyrimidine mirror repeats with point substitutions. Nucleic Acids Res 18:6621–6624

    PubMed  CAS  CrossRef  Google Scholar 

  • Beltrán R, Martínez-Balbás MA, Bernués J, Bowater R, Azorín F (1993) Characterization of the zinc-induced structural transition to *H-DNA at a d(GA · CT)22 sequence. J Mol Biol 230:966–978

    PubMed  CrossRef  Google Scholar 

  • Bernués J, Beltrán R, Azorín F (1991) SV40 recombinants carrying a d (CT· GA)22 sequence show increased genomic instability. Gene 108:269–274

    PubMed  CrossRef  Google Scholar 

  • Bernués J, Beltrán R, Casasnovas JM, Azorín F (1989) Structural polymorphism of homopurine-homopyrimidine sequences: the secondary DNA structure adopted by a d(GA · CT)22 sequence in the presence of zinc ions. EMBO J 8:2087–2094

    PubMed  Google Scholar 

  • Bernués J, Beltrán R, Casasnovas JM, Azorín F (1990) DNA-sequence and metalion specificity of the formation of *H-DNA. Nucleic Acids Res 18:4067–4073

    PubMed  CrossRef  Google Scholar 

  • Blume SW, Gee JE, Shrestha K, Miller DM (1992) Triple helix formation by purine-rich oligonucleotides targeted to the human dihydrofolate reductase promoter. Nucleic Acids Res 20:1777–1784

    PubMed  CAS  CrossRef  Google Scholar 

  • Caddie MS, Lussier RH, Heintz NH (1990) Intramolecular DNA triplexes, bent DNA and DNA unwinding elements in the initiation region of an amplified dihydrofolate reductase replicon. J Mol Biol 211:19–33

    CrossRef  Google Scholar 

  • Campos JL, Subirana JA (1991) the influence of Mg++ and Zn++ on polypurinepolypyrimidine multistranded helices. J Biomol Struct Dyn 8:793–800

    PubMed  CAS  Google Scholar 

  • Cantor CR, Efstratiadis A (1984) Possible structures of homopurine-homopyrimidine S1 hypersensitive sites. Nucleic Acids Res 12:8059–8072

    PubMed  CAS  CrossRef  Google Scholar 

  • Cantor CR, Efstratiadis A (1984) Possible structures of homopurine-homopyrimidine S1 hypersensitive sites. Nucleic Acids Res 12:8059–8072

    PubMed  CAS  CrossRef  Google Scholar 

  • Casasnovas JM, Huertas D, Ortiz-Lombardía M, Kypr J, Azorín F (1993) Structural polymorphism of d(GA · TC)n DNA sequences. Intramolecular and intermolecular associations of the individual strands. J Mol Biol 233:671–681

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen F-M (1991) Intramolecular triplex formation of the purine · purine · pyrimidine type. Biochemistry 30:4472–4479

    PubMed  CAS  CrossRef  Google Scholar 

  • Collier DA, Griffin JA, Wells RD (1988) Non-B right-handed DNA conformations of homopurine · homopyrimidine sequences in the murine immunoglobulin C a switch region. J Biol Chem 263:7397–7405

    PubMed  CAS  Google Scholar 

  • Dayn A, Samadashwily GM, Mirkin SM (1992) Intramolecular DNA triplexes: unusual sequence requirements and influence on DNA polymerization. Proc Natl Acad Sci USA 89:11406–11410

    PubMed  CAS  CrossRef  Google Scholar 

  • de los Santos C, Rosen M, Patel D (1989) NMR studies of DNA (R+)n · (Y-)n · (Y+)n triple helices in solution: imino and amino proton markers to T · A · T and C · G · C+base-tripe formation. Biochemistry 28:7282–7289

    PubMed  CrossRef  Google Scholar 

  • Durland RH, Kessler DJ, Gunnell S, Duvic M, Pettitt BM, Hogan ME (1991) Binding of triple helix forming oligonucleotides to sites in gene promoters. Biochemistry 30:9246–9255

    PubMed  CAS  CrossRef  Google Scholar 

  • Evans T, Efstratiadis A (1986) Sequence-dependent S1 nuclease hypersensitivity of a heteronomous DNA duplex. J Biol Chem 261:14771–14780

    PubMed  CAS  Google Scholar 

  • Felsenfeld G, Davies DR, Rich A (1957) Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 79:2023

    CAS  CrossRef  Google Scholar 

  • Fox KR (1990) Long (dA)n · (dT) tracts can form intramolecular triplexes under superhelical stress. Nucleic Acids Res 18:5387–5391

    PubMed  CAS  CrossRef  Google Scholar 

  • François JC, Saison-Behmoaras T, Barbier C, Chassignol M, Thuong NT, Hélène C (1989) Sequence-specific recognition and cleavage of duplex DNA via triplehelix formation by oligonucleotides covalently linked to a phenanthroline-copper chelate. Proc Natl Acad Sci USA 86:9702–9706

    PubMed  CrossRef  Google Scholar 

  • Gee JE, Blume S, Snyder RC, Ray R, Miller DM (1992) Triplex formation prevents Sp1 binding to the dihydrofolate reductase promoter. J Biol Chem 267:11163–11167

    PubMed  CAS  Google Scholar 

  • Giovannangeli C, Rougée M, Garestier T, Thuong NT, Hélène C (1992) Triplehelix formation by oligonucleotides containing the three bases thymine, cytosine, and guanine. Proc Natl Acad Sci USA 89:8631–8635

    PubMed  CAS  CrossRef  Google Scholar 

  • Golub EI, Radding CM, Ward DC (1993) Inhibition of RNA polymerase II transcription by oligonucleotide-RecA protein filaments targeted to promoter sequences. Proc Natl Acad Sci USA 90:7186–7190

    PubMed  CAS  CrossRef  Google Scholar 

  • Gray DM, Vaughan M, Ratliff RL, Hayes FN (1980) Circular dichroism spectra show that repeating dinucleotide DNAs may form helices in which every other base is looped out. Nucleic Acids Res 8:3695–3707

    PubMed  CrossRef  Google Scholar 

  • Griffin LC, Dervan PB (1989) Recognition of thymine-adenine base pairs by guanine in a pyrimidine triple helix motif. Science 245:967–971

    PubMed  CAS  CrossRef  Google Scholar 

  • Grigoriev M, Praseuth D, Guyesse AL, Robin P, Thuong NT, Hélène C, Harel-Bellan A (1993) Inhibition of gene expression by triple helix-directed DNA crosslinking at specific sites. Proc Natl Acad Sci USA 90:3501–3505

    PubMed  CAS  CrossRef  Google Scholar 

  • Hampel KJ, Burkholder GD, Lee JS (1993) Plasmid dimerization mediated by triplex formation between polypyrimidine-polypurine repeats. Biochemistry 32:1072–1077

    PubMed  CAS  CrossRef  Google Scholar 

  • Hanvey JC, Shimizu M, Wells RD (1988) Intramolecular DNA triplexes in supercoiled plasmids. Proc Natl Acad Sci USA 85:6292–6296

    PubMed  CAS  CrossRef  Google Scholar 

  • Havre PA, Glazer PM (1993) Targeted mutagenesis of simian virus 40 DNA mediated by a triple helix-forming oligonucleotide. J Virol 67:7324–7331

    PubMed  CAS  Google Scholar 

  • Havre PA, Gunther EJ, Gasparro FP, Glazer PM (1993) Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen. Proc Natl Acad Sci USA 90:7879–7883

    PubMed  CAS  CrossRef  Google Scholar 

  • Hentschel CC (1982) Homocopolymer sequences in the spacer of sea urchin histone gene repeat are sensitive to S1 nuclease. Nature (Lond) 295:714–716

    CAS  CrossRef  Google Scholar 

  • Hoffman EK, Trusko SP, Murphy M, George DL (1990) An S1 nuclease-sensitive homopurine/homopyrimidine domain in the c-Ki-ras promoter interacts with a nuclear factor. Proc Natl Acad Sci USA 87:2705–2709

    PubMed  CAS  CrossRef  Google Scholar 

  • Hsieh P, Camerini-Otero CS, Camerini-Otero RD (1990) Pairing of homologous DNA sequences by proteins: evidence for three-stranded DNA. Genes Dev 4:1951–1963

    PubMed  CAS  CrossRef  Google Scholar 

  • Htun H, Dahlberg JE (1988) Single strands, triple strands, and kinks in H-DNA. Science 241:1791–1796

    PubMed  CAS  CrossRef  Google Scholar 

  • Htun H, Dahlberg JE (1989) Topology and formation of triple-stranded H-DNA. Science 243:1571–1576

    PubMed  CAS  CrossRef  Google Scholar 

  • Htun H, Lund E, Dahlberg JE (1984) Human U1 genes contain an unusually sensitive nuclease S1 cleavage site within the conserved 3′-flanking region. Proc Natl Acad Sci USA 81:7288–7892

    PubMed  CAS  CrossRef  Google Scholar 

  • Huertas D, Bellsolell L, Casasnovas JM, Coll M, Azorín F (1993) Alternating d(GA)n DNA sequences form antiparallel stranded homoduplexes stabilized by the formation of G · A base pairs. Embo J 12:4029–4038

    PubMed  CAS  Google Scholar 

  • Ing NH, Beekman JM, Kessler DJ, Murphy M, Jayaraman K, Zendegui JG, Hogan ME, O’Malley BW, Tsai MJ (1993) In vivo transcription of a progesteroneresponsive gene is specifically inhibited by a triplex-forming oligonucleotide. Nucleic Acids Res 21:2789–2796

    PubMed  CAS  CrossRef  Google Scholar 

  • Ito T, Smith CL, Cantor CR (1992) Sequence-specific DNA purification by triplex affinity capture. Proc Natl Acad Sci USA 89:495–498

    PubMed  CAS  CrossRef  Google Scholar 

  • Johnston BH (1988) The S1-sensitive form of d(C-T)n · d(A-G)n: chemical evidence for a three-stranded structure in plasmids. Science 241:1800–1804

    PubMed  CAS  CrossRef  Google Scholar 

  • Kang S, Wells RD (1992) Central non-pur.pyr sequences in oligo(dG · dC) tracts and metal ions influence the formation of intramolecular DNA triplex isomers. J Biol Chem 267:20887–20891

    PubMed  CAS  Google Scholar 

  • Kang S, Wohlrab F, Wells RD (1992) Metal ions cause the isomerization of certain intramolecular triplexes. J Biol Chem 267:1259–1264

    PubMed  CAS  Google Scholar 

  • Karlovsky P, Pecinka P, Vojtísková M, Makaturová E, Paleček E (1990) Protonated triplex DNA in E. Coli. cells as detected by chemical probing. FEBS Lett 274:39–42

    PubMed  CAS  CrossRef  Google Scholar 

  • Kiyama R, Camerini-Otero RD (1991) A triplex DNA-binding protein from human cells: purification and characterization. Proc Natl Acad Sci USA 88:10450–10454

    PubMed  CAS  CrossRef  Google Scholar 

  • Kohwi Y (1989) Cationic metal-specific structures adopted by the poly(dG) region and the direct repeats in the chicken adult βAglobin gene promoter. Nucleic Acids Res 17:4493–4502

    PubMed  CAS  CrossRef  Google Scholar 

  • Kohwi Y, Kohwi-Shigematsu T (1988) Magnesium ion-dependent triple-helix structure formed by homopurine-homopyrimidine sequences in supercoiled plasmid DNA. Proc Natl Acad Sci USA 85:3781–3785

    PubMed  CAS  CrossRef  Google Scholar 

  • Kohwi Y, Kohwi-Shigematsu T (1991) Altered gene expression correlates with DNA structure. Genes Dev 5:2547–2554

    PubMed  CAS  CrossRef  Google Scholar 

  • Kohwi Y, Kohwi-Shigematsu T (1993) Structural polymorphism of homopurinehomopyrimidine sequences at neutral pH. J Mol Biol 231:1090–1101

    PubMed  CAS  CrossRef  Google Scholar 

  • Kohwi Y, Pachenko Y (1993) Transcription-dependent recombination induced by triple-helix formation. Genes Dev 7:1766–1778

    PubMed  CAS  CrossRef  Google Scholar 

  • Kohwi Y, Malkhosyan SR, Kohwi-Shigematsu T (1992) Intramolecular dG · dG · dC triplex detected in Escherichia coli cells. J Mol Biol 223:817–822

    PubMed  CAS  CrossRef  Google Scholar 

  • Kohwi-Shigematsu T, Kohwi Y (1991) Detection of triple-helix related structures adopted by poly(dG)-poly(dC) sequences in supercoiled plasmid DNA. Nucleic Acids Res 19:4267–4271

    PubMed  CAS  CrossRef  Google Scholar 

  • Lapidot A, Baran N, Manor H (1989) (dT-dC)n and (dG-dA)n tracts arrest singlestranded DNA replication in vitro. Nucleic Acids Res 17:881–900

    CrossRef  Google Scholar 

  • Liu QR, Chan PK (1990) Identification of a long stretch of homopurine · homopyrimidine sequence in a cluster of retroposons in the human genome. J Mol Biol 212:453–459

    PubMed  CAS  CrossRef  Google Scholar 

  • Lu Q, Wallrath LL, Granok H, Elgin SCR (1993) (CT)n · (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene. Mol Cell Biol 13:2802–2814

    PubMed  CAS  Google Scholar 

  • Lyamichev VI, Mirkin SM, Frank-Kamenetskii MD (1985) A pH-dependent structural transition in the homopurine-homopyrimidine tract in superhelical DNA. J Biomol Struct Dyn 3:327–338

    PubMed  CAS  Google Scholar 

  • Lyamichev VI, Mirkin SM, Frank-Kamenetskii MD (1986) Structures of homopurine-homopyrimidine tract in superhelical DNA. J Biomol Struct Dyn 3:667–669

    PubMed  CAS  Google Scholar 

  • Lyamichev VI, Mirkin SM, Frank-Kamenetskii MD (1987) Structure of (dG)n · (dC)n under superhelical stress and acid pH. J Biomol Struct Dyn 5:275–282

    PubMed  CAS  Google Scholar 

  • Lyamichev VI, Voloshin ON, Frank-Kamenetskii MD, Soyfer VN (1991) Photofootprinting of DNA triplexes. Nucleic Acids Res 19:1633–1638

    PubMed  CAS  CrossRef  Google Scholar 

  • Maher III LJ, Wold B, Dervan PB (1989) Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science 245:725–730

    PubMed  CAS  CrossRef  Google Scholar 

  • Maher III LJ, Dervan PB, Wold B (1990) Kinetic analysis of oligodeoxyribonucleotide-directed triple-helix formation on DNA. Biochemistry 29:8820–8826

    PubMed  CAS  CrossRef  Google Scholar 

  • Maher III LJ, Dervan PB, Wold B (1992) Analysis of promoter-specific repression by triple-helical DNA complexes in a eukaryotic cell-free transcription system. Biochemistry 31:70–81

    PubMed  CAS  CrossRef  Google Scholar 

  • Martínez-Balbás A, Azorín F (1993) The effect of zinc on the secondary structure of d(GA · TC)n DNA sequences of different length: a model for the formation of *H-DNA. Nucleic Acids Res 21:2557–2562

    PubMed  CrossRef  Google Scholar 

  • Mason AJ, Evans BA, Cox DR, Shine J, Richards RI (1983) Structure of mouse kallikrein gene family suggest a role in specific processing of biologically active Peptides. Nature (Lond) 303:300–307

    CAS  CrossRef  Google Scholar 

  • Mirkin SM, Lyamichev VI, Drushlyak KN, Dobrynin VN, Filippov SA, Frank-Kamenetskii MD (1987) DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature (Lond) 330:495–497

    CAS  CrossRef  Google Scholar 

  • Mooren MMW, Pulleyblank DE, Wijmenga SS, Blommers MJJ, Hilbers C (1990) Polypurine/polypyrimidine hairpins form a triple helix structure at low pH. Nucleic Acids Res 18:6523–6529

    PubMed  CAS  CrossRef  Google Scholar 

  • Ohms J, Ackermann T (1990) Thermodynamics of double-and triple-helical aggregates formed by self-complementary oligoribonucleotides of the type rAxUy. Biochemistry 29:5237–5244

    PubMed  CAS  CrossRef  Google Scholar 

  • O’Neill D, Bornschlegel K, Flamm M, Castle M, Bank A (1991) A DNA-binding factor in adult hematopoietic cells interacts with a pyrimidine-rich domain upstream from the human δ-globin gene. Proc Natl Acad Sci USA 88:8953–8957

    PubMed  CrossRef  Google Scholar 

  • Panyutin IG, Wells RD (1992) Nodule DNA in the (GA)37 · (CT)37 insert in superhelical plasmids. J Biol Chem 267:5495–5501

    PubMed  CAS  Google Scholar 

  • Parniewski P, Kwinkowski M, Wilk A, Klysik J (1990) Dam methytransferase sites located within the loop region of the oligopurine-oligopyrimidine sequences capable of forming H-DNA are undermethylated in vivo. Nucleic Acids Res 18:605–611

    PubMed  CAS  CrossRef  Google Scholar 

  • Pei D, Corey DR, Schultz PG (1990) Site-specific cleavage of duplex DNA by a semisynthetic nuclease via triple-helix formation. Proc Natl Acad Sci USA 87:9858–9862

    PubMed  CAS  CrossRef  Google Scholar 

  • Perrouault L, Asseline U, Rivalle C, Thuong NT, Bisagni E, Giovannangeli C, Le Doan T, Hélène C (1990) Sequence-specific artificial photo-induced endonucleases based on triple helix-forming oligonucleotides. Nature (Lond) 344:358–360

    CAS  CrossRef  Google Scholar 

  • Pestov DG, Dayn A, Siyanova EY, George DL, Mirkin SM (1991) H-DNA and Z-DNA in the mouse c-Ki-ras promoter. Nucleic Acids Res 19:6527–6532

    PubMed  CAS  CrossRef  Google Scholar 

  • Pilch DS, Levenson C, Shafer RH (1990) Structural analysis of the d(A)20 · 2d(T)20 triple helix. Proc Natl Acad Sci USA 87:1942–1946

    PubMed  CAS  CrossRef  Google Scholar 

  • Pilch DS, Levenson C, Shafer RH (1991) Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Biochemistry 30:6081–6087

    PubMed  CAS  CrossRef  Google Scholar 

  • Postel EH, Mango SE, Flint SJ (1989) A nuclease-hypersensitive element of the human c-myc promoter interacts with a transcription initiation factor. Mol Cell Biol 9:5123–5133

    PubMed  CAS  Google Scholar 

  • Postel EH, Flint SJ, Kessler DJ, Hogan ME (1991) Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels. Proc Natl Acad Sci USA 88:8227–8831

    PubMed  CAS  CrossRef  Google Scholar 

  • Radhakrishnan I, de los Santos C, Patel DJ (1991a) Nuclear magnetic resonance structural studies of intramolecular purine · purine · pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction. J Mol Biol 221:1403–1418

    PubMed  CAS  Google Scholar 

  • Radhakrishnan I, Gaon X, de los Santos C, Live D, Patel DJ (1991b) NMR structural studies of intramolecular (Y+)n · (R+)n · (Y—)n DNA triplexes in solution: imino and proton and nitrogen markers of G · TA base triple formation. Biochemistry 30:9022–9030

    PubMed  CAS  CrossRef  Google Scholar 

  • Rajagopal P, Feigon J (1989) Triple-strand formation in the homopurine · homopyrimidine DNA oligonucleotides d(G-A)4 and d(T-C)4. Nature (Lond) 339:637–640

    CAS  CrossRef  Google Scholar 

  • Rao BJ, Radding CM (1993) Homologous recognition promoted by RecA protein via non-Watson-Crick bonds between identical DNA strands. Proc Natl Acad Sci USA 90:6646–6650

    PubMed  CAS  CrossRef  Google Scholar 

  • Rao BS, Manor H, Martin RG (1988) Pausing in simian virus 40 DNA replication by a sequence containing (dG-dA)27 · (dT-dC)27. Nucleic Acids Res 16:8077–8094

    PubMed  CAS  CrossRef  Google Scholar 

  • Rich A (1958a) Formation of two-and three-stranded helical molecules by polyinosinic acid and polyadenylic acid. Nature (Lond) 181:521–525

    CAS  CrossRef  Google Scholar 

  • Rich A (1958b) The molecular structure of polyinosinic acid. Biochim Biophys Acta 29:522–525

    CrossRef  Google Scholar 

  • Richards JE, Gilliam AC, Shen A, Tucker PW, Blattner FR (1983) Unusual sequences in the murine immunoglobulin μ-δ heavy-chain region. Nature (Lond) 306:483–487

    CAS  CrossRef  Google Scholar 

  • Roy C (1993) Inhibition of gene transcription by purine rich triplex forming oligodeoxyribonucleotides. Nucleic Acids Res 21:2845–2852

    PubMed  CAS  CrossRef  Google Scholar 

  • Samadashwily GM, Dayn A, Mirkin SM (1993) Suicidal nucleotide sequences for DNA polymerization. EMBO J 12:4975–4983

    PubMed  CAS  Google Scholar 

  • Sekiya Y, Kuchino Y, Nishimura S (1981) Mammalian tRNA genes: nucleotide sequence of rat genes for tRNAAsp, tRNAGly and tRNAGlu. Nucleic Acids Res 9:2239–2250

    PubMed  CAS  CrossRef  Google Scholar 

  • Shimizu M, Hanvey JC, Wells RD (1989) Intramolecular DNA triplexes in supercoiled plasmids. J Biol Chem 264:5944–5949

    PubMed  CAS  Google Scholar 

  • Skoog JU, Maher III LJ (1993a) Relief of triple-helix-mediated promoter inhibition by elongating RNA polymerases. Nucleic Acids Res 21:4055–4058

    PubMed  CAS  CrossRef  Google Scholar 

  • Skoog JU, Maher III LJ (1993b) Repression of bacteriophage promoters by DNA and RNA oligonucleotides. Nucleic Acids Res 21:2131–2138

    PubMed  CAS  CrossRef  Google Scholar 

  • Soeller WC, Oh CE, Kornberg TB (1993) Isolation of cDNAs encoding the Drosophila GAGA transcription factor. Mol Cell Biol 13:7961–7970

    PubMed  CAS  Google Scholar 

  • Strobel SA, Dervan PB (1990) Site-specific cleavage of a yeast chromosome by oligonucleotide-directed triple-helix formation. Science 249:73–75

    PubMed  CAS  CrossRef  Google Scholar 

  • Tsukiyama T, Becker PB, Wu C (1994) ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature (Lond) 367:525–532

    CAS  CrossRef  Google Scholar 

  • Ussery DW, Sinden RR (1993) Environmental influences on the in vivo level of intramolecular triplex DNA in Escherichia coli. Biochemistry 32:6206–6213

    PubMed  CAS  CrossRef  Google Scholar 

  • Vojtísková M, Paleček E (1987) Unusual protonated structure in the homopurine · homopyrimidine tract of supercoiled and linearized plasmids recognized by chemical probes. J Biomol Struct Dyn 5:283–296

    PubMed  Google Scholar 

  • Vojtísková M, Mirkin S, Lyamichev V, Voloshin O, Frank-Kamenetskii MD, Paleček E (1988) Chemical probing of the homopurine · homopyrimidine tract in supercoiled DNA at single-nucleotide resolution. FEBS Lett 234:295–299

    PubMed  CrossRef  Google Scholar 

  • Voloshin ON, Mirkin SM, Lyamichev VI, Belotserkovskii BP, Frank-Kamenetskii MD (1988) Chemical probing of homopurine-homopyrimidine mirror repeats in supercoiled DNA. Nature (Lond) 333:475–476

    CAS  CrossRef  Google Scholar 

  • Weinreb A, Collier DA, Birshtein BK, Wells RD (1990) Left-handed Z-DNA and intramolecular triplex formation at the site of an unequal sister chromatid exchange. J Biol Chem 265:1352–1359

    PubMed  CAS  Google Scholar 

  • Weintraub H (1983) A dominant role for DNA secondary structure in forming hypersensitive structures in chromatin. Cell 32:1191–1203

    PubMed  CAS  CrossRef  Google Scholar 

  • Weintraub H, Larsen A, Groudine M (1981) a-Globin-gene switching during the development of chicken embryos: expression and chromosome structure. Cell 24:333–344

    PubMed  CAS  CrossRef  Google Scholar 

  • Wells RD, Collier DA, Hanvey JC, Shimizu M, Wohlrab F (1988) The chemistry and biology of unusual DNA structures adopted by oligopurine · oligopyrimidine sequences. FASEB J 2:2939–2949

    PubMed  CAS  Google Scholar 

  • Xodo LE, Manzini G, Quadrifoglio F (1990) Spectroscopic and calorimetric investigation on the DNA triplex formed by d(CTCTTCTTTCTTTTCTTTCTTCTC) and d(GAGAAGAAAGA) at acidic pH. Nucleic Acids Res 18:3557–3564

    PubMed  CAS  CrossRef  Google Scholar 

  • Xodo LE, Manzini G, Quadrifoglio F, van der Marel G, van Boom J (1991) Effect of 5-methylcytosine on the stability of triple-stranded DNA — a thermodynamic study. Nucleic Acids Res 19:5625–5631

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bernués, J., Azorín, F. (1995). Triple-Stranded DNA. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79488-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79488-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79490-2

  • Online ISBN: 978-3-642-79488-9

  • eBook Packages: Springer Book Archive