Skip to main content

UBF, an Architectural Element for RNA Polymerase I Promoters

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 9))

Abstract

Activation of transcription by RNA polymerase I (polI) requires that an assembly of protein factors locate the polI promoter and form a stable preinitiation complex. It is apparently this pre-initiation complex, not the underlying DNA sequence, which is then recognized by polI as it cycles through many rounds of RNA chain initiation, elongation, and termination. In vertebrate cells two components have so far been identified as having roles in forming the polI pre-initiation complex. One is SL1, a complex of four polypeptides one of which is the TATA-binding protein.4 The other is UBF, the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachvarov D, Moss T (1991) The RNA Polymerase I transcription factor xUBF contains five tandemly repeated HMG homology boxes. Nucleic Acids Res 19:2331–2335

    Article  PubMed  CAS  Google Scholar 

  • Bazett-Jones DP, Leblanc B, Herfort M, Moss T (1994) Short-range DNA looping by the Xenopus HMG-box transcription factor xUBF. Science 264:1134–1137

    Article  PubMed  CAS  Google Scholar 

  • Bell SP, Learned RM, Jantzen H-M, Tjian R (1988) Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 241:1192–1197

    Article  PubMed  CAS  Google Scholar 

  • Bell SP, Pikaard CS, Reeder RH, Tjian R (1989) Molecular mechanisms governing species specific transcription of ribosomal RNA. Cell 59:489–497

    Article  PubMed  CAS  Google Scholar 

  • Chan EK, Imai H, Hamel JC, Tan EM (1991) Human autoantibody to RNA Polymerase I transcription factor hUBF: molecular identity of nucleolus organizer region autoantigen NOR-90 and ribosomal RNA transcription upstream binding factor. J Exp Med 174:1239–1244

    Article  PubMed  CAS  Google Scholar 

  • Conconi A, Widmer RM, Koller T, Sogo JM (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57:753–761

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver GP, Putnam CD, Denton ML, Pikaard CS (1994) The RNA polymerase I transcription factor UBF is a sequence tolerant HMG box protein that can recognize structured nucleic acids. Nucleic Acids Res 22:2651–2657

    Article  PubMed  CAS  Google Scholar 

  • Dimitrov SI, Bachvarov D, Moss T (1993) Mapping of a sequence essential for the nuclear transport of the Xenopus ribosomal transcription factor xUBF using a simple coupled translation-transport and acid extraction approach. DNA Cell Biol 12:275–281

    Article  PubMed  CAS  Google Scholar 

  • Dunaway M (1989) A transcription factor, TFIS, interacts with both the promoter and enhancer of the Xenopus rRNA genes. Genes Dev 3:1768–1778

    Article  PubMed  CAS  Google Scholar 

  • Eberhard D, Tora L, Egly JM, Grummt I (1993) A TBP-containing multiprotein complex (TIF-IB) mediates transcription speciticity of murine RNA Polymerase I. Nucleic Acids Res 21:4180–4186

    Article  PubMed  CAS  Google Scholar 

  • Goenechea LG, Rendon MC, Iglesias C, Valdivia MM (1992) Immunostaining of nucleolus organizers in mammalian cells by a human autoantibody against the Polymerase I transcription factor UBF. Cell Mol Biol 38:841–851

    PubMed  CAS  Google Scholar 

  • Goodman SD, Nash HA (1989) Functional replacement of a protein-induced bend in a DNA recombination site. Nature 341:251–254

    Article  PubMed  CAS  Google Scholar 

  • Grosschedl R, Giese K, Pagel J (1994) HMG domain proteins — architectural elements in the assembly of nucleoprotein structures. Trends Genet 10:94–100

    Article  PubMed  CAS  Google Scholar 

  • Guimond A, Moss T (1992) Variants of the Xenopus laevis ribosomal transcription factor xUBF are developmentally regulated by differential splicing. Nucleic Acids Res 20:3361–3366

    Article  PubMed  CAS  Google Scholar 

  • Hisatake K, Nishimura T, Maeda Y, Hanada K, Song C-Z, Muramatsu M (1991) Cloning and structural analysis of cDNA and the gene for mouse transcription factor UBF. Nucleic Acids Res 19:4631–4637

    Article  PubMed  CAS  Google Scholar 

  • Hu C-H, McStay B, Reeder RH (1993) xUBF, an RNA Polymerase I transcription factor, loops and cross links DNA with low sequence specificity. Mol Cell Biol 14:2871–2882

    Google Scholar 

  • Jantzen H-M, Admon A, Bell SP, Tjian R (1990) Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344:830–836

    Article  PubMed  CAS  Google Scholar 

  • Jantzen H-M, Chow AM, King DS, Tjian R (1992) Multiple domains of the RNA Polymerase I activator hUBF interact with the TATA-binding protein complex hSL1 to mediate transcription. Genes Dev 6:1950–1963

    Article  PubMed  CAS  Google Scholar 

  • Kuhn A, Grummt I (1992) Dual role of the nucleolar transcription factor UBF: trans-activator and antirepressor. Proc Natl Acad Sci USA 89:7340–7344

    Article  PubMed  CAS  Google Scholar 

  • Kuhn A, Voit R, Stefanovsky V, Evers R, Bianchi M, Grummt I (1994) Functional differences between the two splice variants of the nucleolar transcription factor UBF: the second HMG box determines specificity of DNA binding and transcriptional activity. EMBO J 13:416–424

    PubMed  CAS  Google Scholar 

  • Learned RM, Cordes S, Tjian R (1985) Purification and characterization of a transcription factor that confers promoter specificity to human RNA polymerase I. Mol Cell Biol 5:1358–1369

    PubMed  CAS  Google Scholar 

  • Learned RM, Learned TK, Haitiner MM, Tjian R (1986) Human rRNA transcription is modulated by the coordinate binding of two factors to an upstream control element. Cell 45:847–857

    Article  PubMed  CAS  Google Scholar 

  • Leblanc B, Read C, Moss T (1993) Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction. EMBO J 12:513–525

    PubMed  CAS  Google Scholar 

  • Maeda Y, Hisatake K, Kondo T, Hanada K, Song C-Z, Nishimura T, Muramatsu M (1992) Mouse rRNA gene transcription factor mUBF requires both HMG-box1 and an acidic tail for nucleolar accumulation: molecular analysis of the nucleolar targeting mechanism. EMBO J 11:3695–3704

    PubMed  CAS  Google Scholar 

  • McStay B, Hu C-H, Pikaard CS, Reeder RH (1991a) xUBF and Rib1 are both required for formation of a stable polymerase I promoter complex in X. laevis. EMBO J 10:2297–2903

    PubMed  CAS  Google Scholar 

  • McStay B, Frazie, MW, Reeder RH (1991b) xUBF contains a novel dimerization domain essential for RNA polymerase I transcription. Genes Dev 5:1957–1968

    Article  PubMed  CAS  Google Scholar 

  • O’Mahony DJ, Rothblum LI (1991) Identification of two forms of the RNA polymerase I transcription factor UBF. Proc Natl Acad Sci USA 88:3180–3184

    Article  PubMed  Google Scholar 

  • O’Mahony DJ, Smith SD, Xie W-Q, Rothblum LI (1992a) Analysis of the phosphorylation, DNA-binding and dimerization properties of the RNA polymerase I transcription factors UBF1 and UBF2. Nucl Acids Res 20:1301–1308

    Article  PubMed  Google Scholar 

  • O’Mahony DJ, Xie W-Q, Smith SD, Singer HA, Rothblum LI (1992b) Differential phosphorylation and localization of the transcription factor UBF in vivo in response to serum deprivation. J Biol Chem 267:35–38

    PubMed  Google Scholar 

  • Pikaard CS, McStay B, Schultz MC, Bell SP, Reeder RH (1989) The Xenopus ribosomal gene enhancers bind an essential polymerase I transcription factor, xUBF. Genes Dev 3:1779–1788

    Article  PubMed  CAS  Google Scholar 

  • Pikaard CS, Pape LK, Henderson SL, Ryan K, Paalman MH, Lopata MA, Reeder RH, Sollner-Webb B (1990a) Enhancers for RNA polymerase I in mouse ribosomal DNA. Mol Cell Biol 10:4816–4825

    PubMed  CAS  Google Scholar 

  • Pikaard CS, Smith SD, Reeder RH, Rothblum L (1990b) rUBF, an RNA polymerase I transcription factor from rats, produces DNase I footprints identical to those produced by xUBF, its homolog from frogs. Mol Cell Biol 10:3810–3812

    PubMed  CAS  Google Scholar 

  • Putnam CD, Pikaard CS (1992) Cooperative binding of the Xenopus RNA polymerase I transcription factor xUBF to repetitive ribosomal gene enhancers. Mol Cell Biol 12:4970–4980

    PubMed  CAS  Google Scholar 

  • Putnam CD, Copenhaver GP, Denton ML, Pikaard CS (1994) The RNA polymerase I transactivator UBF requires its dimerization domain and HMG box1 to bend, wrap, and positively supercoil enhancer DNA. Mol Cell Biol 14:6476–6488

    PubMed  CAS  Google Scholar 

  • Read CM, Cary PD, Crane-Robinson C, Driscoll PC, Norman DG (1993) Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res 21:3427–3436

    Article  PubMed  CAS  Google Scholar 

  • Reeder RH (1992) The regulation of transcription by RNA polymerase I. In: Yamamoto K, McKnight SL (eds) Transcriptional regulation. Cold Spring Harbor, NY, pp 315–347

    Google Scholar 

  • Rodrigo RM, Rendon MC, Torreblanca J, Garcia-Herdugo G, Moreno FJ (1992) Characterization and immunolocalization of RNA polymerase I transcription factor UBF with anti-NOR serum in protozoa, higher plant and vertebrate cells. J Cell Sci 103:1053–1063

    PubMed  CAS  Google Scholar 

  • Roussel P, Belenguer P, Amalric F, Hernandez-Verdun D (1992) Nucleolin is an Ag-NOR protein; this property is determined by its amino-terminal domain independently of its phosphorylation state. Exp Cell Res 203:259–269

    Article  PubMed  CAS  Google Scholar 

  • Roussel P, Andre C, Masson C, Geraud G, Hernandez-Verdun D (1993) Localization of the RNA Polymerase I transcription factor hUBF during the cell cycle. J Cell Sci 104:327–337

    PubMed  CAS  Google Scholar 

  • Scheer U, Rose KM (1984) Localization of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci USA 81:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Thiry M, Goessens G (1993) Structure, function and assembly of the nucleolus. Trends Cell Biol 3:236–241

    Article  PubMed  CAS  Google Scholar 

  • Schnapp G, Santori F, Carles C, Riva M, Grummt I (1994) The HMG box-containing nucleolar transcription factor UBF interacts with a specific subunit of RNA Polymerase I. EMBO J 13:190–199

    PubMed  CAS  Google Scholar 

  • Tjian R, Maniatis T (1994) Transcriptional activation: a complex puzzle with few easy pieces. Cell 77:5–8

    Article  PubMed  CAS  Google Scholar 

  • Treiber DK, Zhai X, Jantzen H-M, Essigman JM (1994) Cisplatin-DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF. Proc Natl Acad Sci USA 91:5672–5676

    Article  PubMed  CAS  Google Scholar 

  • Voit R, Schnapp A, Kuhn A, Rosenbauer H, Hirschman P, Stunnenberg HG, Grummt I (1992) The nucleolar transcription factor mUBF is phosphorylated by casein kinase II in the C-terminal hyperacidic tail which is essential for transactivation. EMBO J 11:2211–2218

    PubMed  CAS  Google Scholar 

  • Weir HM, Kraulis PJ, Hill CS, Raine ARC, Laue ED, Thomas JO (1993) Structure of the HMG box motif in the B-domain of HMG1. EMBO J 12:1311–1319

    PubMed  CAS  Google Scholar 

  • Wisniewski J, Schulze E (1994) High affinity interaction of dipteran high mobility group (HMG) proteins1 with DNA is modulated by COOH-terminal regions flanking the HMG box domain. J Biol Chem 269:10713–10719

    PubMed  CAS  Google Scholar 

  • Zatsepina OV, Voit R, Grummt I, Spring H, Semenov MV, Trendelenberg MF (1993) The RNA Polymerase I-specific transcription factor UBF is associated with transcriptionally active and inactive ribosomal genes. Chromosoma 102:599–611

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reeder, R.H., Pikaard, C.S., McStay, B. (1995). UBF, an Architectural Element for RNA Polymerase I Promoters. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79488-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79488-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79490-2

  • Online ISBN: 978-3-642-79488-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics