New Motilities and Motors in the Flagella of Chlamydomonas

  • M. Bernstein
  • P. L. Beech
  • K. A. Johnson
  • K. G. Kozminski
  • J. L. Rosenbaum
Conference paper
Part of the Colloquium der Gesellschaft für Biologische Chemie 14.–16. April 1994 in Mosbach/Baden book series (MOSBACH, volume 45)


Chlamydomonas is a haploid, unicellular green alga, about 10 µm in diameter. Synchronous cultures can be grown phototrophically in a simple defined medium. In addition to the two 10–12 µm-long flagella that emanate from one end of the cell, Chlamydomonas shares the cytology of typical higher plant and animal cells (e.g., basal bodies/centrioles, microtubules, actin filaments, chloroplasts, mitochondria, en-doplasmic reticulum, and Golgi). The genetics of Chlamydomonas is similar to that of yeast, with plus and minus cells mating to form zygotes, followed by meiosis and tetrad formation. Many mutants are available (Harris 1989) or can be generated by classical mutagenesis procedures. Because Chlamydomonas is easily transformed, with the introduced DNA inserting randomly into the genome (Diener et al. 1990; Kindle et al. 1989), mutants can also be generated by insertional mutagenesis, allowing for the isolation of mutant genes by plasmid rescue (Tam and Lefebvre 1993). In addition, progress is being made on gene cloning by complementation (Purton and Rochaix 1994) and on the selection of homologous recombinants (Sodeinde and Kindle 1993). We are using flagellar regeneration in this green alga as a model system for studying the biogenesis of cell organelles (Johnson and Rosenbaum 1993).


Central Pair Cytoplasmic Dynein Flagellar Protein Radial Spoke Flagellar Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker EJ, Schloss JA, Rosenbaum JL (1984) Rapid changes in tubulin RNA synthesis and stability induced by deflagellation in Chlamydomonas. J Cell Biol 99: 2074–2081PubMedCrossRefGoogle Scholar
  2. Bernstein M, Beech PL, Katz SG, Rosenbaum JL (1994a) A new kinesin-like protein ( Klpl) localized to a single microtubule of the Chlamydomonas flagellum. J Cell Biol 125: 1313–1326Google Scholar
  3. Bernstein M, Rosenbaum JL (1994b) Kinesin-like proteins in the flagella of Chlamydomonas. Trends Cell Biol 4: 236–240PubMedCrossRefGoogle Scholar
  4. Bloodgood RA (1992) Directed movements of ciliary and flagellar membrane components: a C2 tubule review. Biol Cell. 76: 291–301PubMedCrossRefGoogle Scholar
  5. Curry AM, Williams BD, Rosenbaum JL (1992) Sequence analysis reveals homology between two proteins of the flagellar radial spoke. Mol Cell Biol 12: 3967–3977PubMedGoogle Scholar
  6. Diener DR, Ang LH, Rosenbaum JL (1993) Assembly of flagellar radial spoke proteins in Chlamydomonas: identification of the axoneme binding domain of radial spoke protein 3. J Cell Biol 123: 183–190PubMedCrossRefGoogle Scholar
  7. Diener DR, Curry AM, Johnson KA, Williams BD, Lefebvre PA, Kindle KL, Rosenbaum JL (1990) Rescue of a paralyzed-flagella mutant of Chlamydomonas by transformation. Proc Natl Acad Sci USA 87: 5739–5744PubMedCrossRefGoogle Scholar
  8. Fox LA, Sawin KE, Sale WS (1994) Kinesin-related proteins in eukaryotic flagella. J Cell Sci 107: 1545–1550PubMedGoogle Scholar
  9. Harris EH (1989) The Chlamydomonas sourcebook. New York, Academic Press.Google Scholar
  10. Johnson KA, Haas MA, Rosenbaum JL (1994) Localization of a kinesin-related protein to the central pair apparatus of the Chlamydomonas reinhardtii flagellum. J Cell Sci 107: 1551–1556PubMedGoogle Scholar
  11. Johnson KA, Rosenbaum JL (1992) Polarity of flagellar assembly in Chlamydomonas. J Cell Biol 119: 1605–1611PubMedCrossRefGoogle Scholar
  12. Johnson KA, Rosenbaum JL (1993) Flagellar regeneration in Chlamydomonas: a model system for studying organelle assembly. Trends Cell Biol 3: 156–161PubMedCrossRefGoogle Scholar
  13. Kamiya R (1982) Extrusion and rotation of the central-pair microtubules in detergent-treated Chlamydomonas flagella. Cell Motil, Supp 1: 169–173Google Scholar
  14. Kindle KL, Schnell RA, Fernandez E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using a gene for nitrate reductase. J Cell Biol 109: 2589–2601PubMedCrossRefGoogle Scholar
  15. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1992). A new motility associated with the eukaryotic flagellum. Mol Biol Cell 3: 51aGoogle Scholar
  16. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993). A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA 90: 5519–5523PubMedCrossRefGoogle Scholar
  17. Lefebvre PA, Rosenbaum JL (1986). Regulation of the synthesis and assembly of ciliary and flagellar proteins during regeneration. Ann Rev Cell Biol 2: 517–546PubMedCrossRefGoogle Scholar
  18. Omoto CK, Kung C (1979) The pair of central tubules rotates during ciliary beat in Paramecium. Nature (Lond) 279: 532–534CrossRefGoogle Scholar
  19. Omoto CK, Kung C (1980) Rotation and twist of the central-pair microtubules in the cilia of Paramecium. J Cell Biol 87: 33–46PubMedCrossRefGoogle Scholar
  20. Omoto CK, Witman GB (1981) Functionally significant central-pair rotation in a primitive eukaryotic flagellum. Nature (Lond) 290: 708–710CrossRefGoogle Scholar
  21. Purton S, Rochaix JD (1994) Complementation of a Chlamydomonas reinhardtii mutant using a genomic cosmid library. Plant Mol Biol 24: 533–537PubMedCrossRefGoogle Scholar
  22. Remillard SP, Witman GB (1982) Synthesis, transport, and utilization of specific flagellar proteins during flagellar regeneration in Chlamydomonas. J Cell Biol 93: 615–631PubMedCrossRefGoogle Scholar
  23. Rosenbaum JL, Moulder JE, Ringo DL (1969) Flagellar elongation and shortening in Chlamy-domonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol 41: 600–619Google Scholar
  24. Schloss JA, Silflow CD, Rosenbaum JL (1984). mRNA abundance changes during flagellar regeneration in Chlamydomonas reinhardtii. Mol Cell Biol 4: 424–434Google Scholar
  25. Silflow CD, Chisholm RL, Conner TW, Ranum LP (1985) The two alpha-tubulin genes of Chlamydomonas reinhardtii code for slightly different proteins. Mol Cell Biol 5: 2389–2398PubMedGoogle Scholar
  26. Silflow CD, Rosenbaum JL (1981) Multiple a- and (3-tubulin genes in Chlamydomonas and regulation of tubulin mRNA levels after deflagellation. Cell 24: 81–88PubMedCrossRefGoogle Scholar
  27. Sodeinde OA, Kindle KL (1993) Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 90: 9199–9203PubMedCrossRefGoogle Scholar
  28. Tam LW, Lefebvre PA (1993) Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135: 375–384PubMedGoogle Scholar
  29. Williams BD, Velleca MA, Curry AM, Rosenbaum JL (1989) Molecular cloning and sequence analysis of the Chlamydomonas gene coding for radial spoke protein 3: flagellar mutation pf-14 is an ochre allele. J Cell Biol 109: 235–245PubMedCrossRefGoogle Scholar
  30. Youngblom J, Schloss JA, Silflow CD (1984) The two P-tubulin genes of Chlamydomonas reinhardtii code for identical proteins. Mol Cell Biol 4: 2686–2696PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. Bernstein
    • 1
  • P. L. Beech
    • 1
  • K. A. Johnson
    • 2
  • K. G. Kozminski
    • 1
  • J. L. Rosenbaum
    • 1
  1. 1.Department of Biology, Kline Biology TowerYale UniversityNew HavenUSA
  2. 2.Department of BiologyHaverford CollegeHaverfordUSA

Personalised recommendations