Skip to main content

Characterization of Signals Leading to Clonal Expansion or to Cell Death During Lymphocyte B Cell Activation

  • Chapter
Book cover Apoptosis in Immunology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 200))

  • 89 Accesses

Abstract

The immune system is endowed with a multitude of different mechanisms to eliminate, paralyze or neutralize T and B lymphocytes expressing self-reactive antigen receptors that might endanger the individual’s life. The ability of both types of lymphocytes to recognize and react to different stimuli is a learning process that occurs during lymphocyte differentiation, and the mechanisms implicated in self-tolerance intervene at determined control points following developmental criteria. B and T lymphocyte differentiation from committed precursor cells into antibody-secreting plasma cells or effector T cells proceeds through multiple steps that are defined by changes in the expression pattern of lineage-specific genes (Moller 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albina J E, Abate JA, Henry W-J (1991) Nitric oxide production is required for murine resident peritoneal macrophages to supress mitogen-stimulated T cell proliferation. J Immunol 147: 144–148

    PubMed  CAS  Google Scholar 

  • Albina JE, Cui S, Mateo RB, Reichner JS (1993) Nitric-oxide mediated apoptosis in murine peritoneal macrophages. J Immunol 150: 5080–5085

    PubMed  CAS  Google Scholar 

  • Baixeras E, Kroemer G, Cuende E, Márquez C, Boscá L, Alés Martínez JE, Martinez-AC (1993) Signal transduction pathways involved in B cell induction. Immunol Rev 132: 5–47

    Article  PubMed  CAS  Google Scholar 

  • Bierer BE, Hahn WC (1993) T cell adhesion, avidity regulation and signaling: a molecular analysis of CD2. Semin Immunol 5: 249–261

    Article  PubMed  CAS  Google Scholar 

  • Billiar TR, Curran RD, Stuehr DJ, Stadler J, Simmons RL, Murray SR (1990) Inducible cytosolic enzyme activity for the production of nitrogen oxides from L-arginine in hepatocytes. Biochem Biophys Res Commun 168: 1034–1040

    Article  PubMed  CAS  Google Scholar 

  • Bogdan C, Vodovotz Y, Paik J, Xie Q.-W, Nathan C (1993) Traces of bacterial lipopolysaccharide suppress IFN-induced nitric oxide synthase gene expression in primary mouse macrophages. J Immunol 151: 301–309

    PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the corebellum. Proc Natl Acad Sci USA 86: 9030–9033

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1992) Nitric oxide, a novel nouronal messenger. Neuron 8: 3–11

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347: 768–770

    Article  PubMed  CAS  Google Scholar 

  • Brune B, Lapetina EG (1989) Activation of a cytosotic ADP-ribosyltransferase by nitric oxide-generating agents. J Biol Chem 264: 8455–8458

    PubMed  CAS  Google Scholar 

  • Clark EA, Lane PJL (1991) Regulation of human B cell activation and adhesion. Annu Rev Immunol 9: 97–127

    Article  PubMed  CAS  Google Scholar 

  • Clark EA, Ledbetter JA (1994) How B and T cells talk to each other. Nature 367: 425–428

    Article  PubMed  CAS  Google Scholar 

  • Danielian S, Fagard R, Alcover A, Acuto O, Fischer S (1991) The tyrosine kinase activity of p56lck is increased in human T cells activated via CD2. Eur J Immunol 21: 1967–1970

    Article  PubMed  CAS  Google Scholar 

  • Danielian S, Alcover A, Polissard L, Stefanescu M, Acuto O, Fisher S, Fagard R (1993) Both T cell receptor (TCR)-CD3 complex and CD2 increase the tyrosine kinase activity of p56lck. CD2 can mediate TCR-CD3 independent and CD45-dependent activation of p56lck. Eur J Immunol 22: 2915–2921

    Article  Google Scholar 

  • Ding AH, Nathan CF, Graycar J, Derynck R, Stueh DJ, Srimai S (1990) Macrophage deactivating factor and transforming growth factors 1, 2 and 3 inhibit induction on macrophage nitrogen oxide synthesis by IFN. J Immunol 145: 940–944

    PubMed  CAS  Google Scholar 

  • Dong Z, Qi X, Xie K, Fidler IJ (1993) Protein tyrosine kinase inhibitors decrease induction of nitric Oxoid synthase activity in lipopolysaccharide-responsive and lipopolysaccharide-nonresponsive murine macrophages. J Immunol 151: 2717–2724

    PubMed  CAS  Google Scholar 

  • Drapier JC, Hibbs JB Jr (1986) Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible. J Clin Invest 78: 790–795

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Sarabia MJ, Bischoff JR (1993) Bcl-2 associates with the ras-related protein R-ras p23. Nature 366: 274–275

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF (1988) Studies on relaxation of Rabbit aorta by sodium nitrite: the basis for the proposal that the acid activatable inhibitory factor from retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte PM (ed) Mechanism of vasodilation. Raven, New York, p401

    Google Scholar 

  • Garg UC, Hassid AS (1989) Nitric oxide-generating vasodilators and B-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83: 1774–1777

    Article  PubMed  CAS  Google Scholar 

  • Geller DA, Lowenstein CJ, Shapiro RA, Nussler AK, Di Silvio M, Wang SC, Nakayama DK, Simmons RL, Snyder SH, Billiar TR (1993a) Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci USA 90: 3491–3495

    Article  PubMed  CAS  Google Scholar 

  • Geller DA, Nussler AK, Di Silvio M, Lowenstein CJ, Shapiro RA, Wang SC, Simmons RL, Billiar TR (1993b) Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci USA 90: 522–526

    Article  PubMed  CAS  Google Scholar 

  • Genaro AM and Boscá L (1993) Early signals in alloantigen induced B cell proliferation. J Immunol 151: 1832–1843

    PubMed  CAS  Google Scholar 

  • Genaro AM, Gonzálo JA, Boscá L, Martínez- A. C (1994) CD2 occupancy prevents apoptosis in murine B lymphocytes by upregulating Bcl-2 expression. Eur J Immunol 24: 2515–2521

    Article  PubMed  CAS  Google Scholar 

  • Golay J, Cusmano G, Introma M (1992) Independent regulation of c-myc, b-myb and c-myb gene expression by inducers and inhibitors of proliferation in human B lymphocytes. J Immunol 149: 300–308

    PubMed  CAS  Google Scholar 

  • Granger DL, Taintor RR, Cook JL, Hibbs JB (1980) Injury in neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration. J Clin Invest 65: 357

    Article  PubMed  CAS  Google Scholar 

  • Hauschildt S, Luckhoff A, Mulsch A, Kohler J, Bessler W, Busse RS (1990) Induction and activity of NO syntase in bone marrow derived macrophages are independent of Ca2+. Biochem J 270: 351

    PubMed  CAS  Google Scholar 

  • Hoffman RA, Langrehr JM, Billiar TR, Curran RD, Simmons RL (1990) Alloantigen-induced activation of rat splenocytes is regulated by oxidative metabolism of L-arginiene. J Immunol 145: 2220–2226

    PubMed  CAS  Google Scholar 

  • Ischiropoulos H, Zhu L, Beckman JS (1992) Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 298: 446–451

    Article  PubMed  CAS  Google Scholar 

  • Jenkins MK, Johnson JC (1993) Molecules involved in T-cell costimulation. Curr Opin Immunol 5: 361–367

    Article  PubMed  CAS  Google Scholar 

  • Jonathan S, Reichner JS, Mateo RB, Albina JE (1994) Activated murine macrophages induce apoptosis in tumor cells through nitric oxide-dependent or-independent mechanisms. Cancer Res 54: 2462–2467

    Google Scholar 

  • Kelsoe G, Zheng B (1993) Sites of B-cell activation in vivo. Curr Opin Biol 5: 418–422

    CAS  Google Scholar 

  • Knowles RG, Moncada S (1992) Nitric oxide as a signal in blood vessels. Trends Biochem Sci 17: 399–402

    Article  PubMed  CAS  Google Scholar 

  • Knowles RG, Palacios M, Palmer RMJ, Moncada S (1989) Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 86: 5159–5162

    Article  PubMed  CAS  Google Scholar 

  • Krammer P, Behrman I, Daniel P, Dhein J, Debatin K-M (1994) Regulation of apoptosis in the immune system. Curr Opin Immunol 6: 279–289

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Martinez- AC (1994) Pharmacological inhibition of programmed cell death. Immunol Today 15: 235–242

    Article  PubMed  CAS  Google Scholar 

  • Langrehr JM, Murase N, Markus PM, Cai X, Neuhaus P, Schraut W, Simmons RL, Hoffman RA (1992) Nitric oxide production in host-versus-graft and graft-versus-host reactions in the rat. J Clin Invest 90: 679–683

    Article  PubMed  CAS  Google Scholar 

  • Lepoivre M, Chenais B, Yapo A, Lemaire G, Thelander L, Tenu J-P (1990) Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells. J Biol Chem 265: 14143–14149

    PubMed  CAS  Google Scholar 

  • Liew FY, Li Y, Severn A, Millott S, Schmidt J, Slater M, Moneada S (1991) A possible novel pathway of regulation by murine T helper type-2 (Th2) cells of a Th1 cell activity via the modulation of the induction of nitric oxide synthase on macrophages. Eur J Pharmacol 21: 3009–3014

    CAS  Google Scholar 

  • Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide an related nitrosocompounds. Nature 364: 626–632

    Article  PubMed  CAS  Google Scholar 

  • Loffert D, Schaal S, Erlich A, Hardy RR, Zon Y-R, Muller W, Rajewsky K (1994) Early B-cell development in the mouse: insights from mutations introduced by gene targeting. Immunol Rev 137: 135–172

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein CJ, Snyder SH (1992) Nitric oxide, a novel biological messenger. Cell 70: 705–707

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein CJ, Dinerman JL, Snyder SH (1994) Nitric Oxide: a physiologic Messenger. Ann Intern Med 120: 227–237

    PubMed  CAS  Google Scholar 

  • Lyons CR, Orloff GJ, Cunningham JM (1992) Molecular cloning and functional expression of a inducible NOS from a murine macrophage cell line. J Biol Chem 267: 6370–6374

    PubMed  CAS  Google Scholar 

  • Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988) Macrophage oxidation of L-arginine to nitrite and nitrate: Nitric oxide is an intermediate. Biochemistry 27: 8706–8711

    Article  PubMed  CAS  Google Scholar 

  • Marquez C, Martínez-AC, Kroemer G, Boscá L (1992) Protein kinase C isoenzymes display differential affinity for phorbol esters. Analysis of phorbol ester receptors in B cell differentiation. J Immunol 149: 2560–2568

    PubMed  CAS  Google Scholar 

  • McCartney F, Allen N, Mizel DE, Albina JE, Xie Q-W, Nathan CF, Wahl SM (1993) Supression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med 178: 749–754

    Article  Google Scholar 

  • Merino R, Ding L, Veis DJ, Korsmeyer SJ, Nuñez G (1994) Developmental regulation of the bcl-2 protein and susceptibility to cell death in B lymphocytes. EMBO J 23: 683–691

    Google Scholar 

  • Moingeon P, Chang H, Sayre PH, Clayton LK, Alcover A, Gardner P, Reinherz EL (1989a) The structural biology of CD2. Immunol Rev 111: 111–114

    Article  PubMed  CAS  Google Scholar 

  • Moingeon P, Chang HC, Wallner BP, Stebbins C, Frey AZ, Reinherz EL (1989b) CD2 mediated adhesion facilitates T lymphocyte antigen recognition function. Nature 339: 312

    Article  PubMed  CAS  Google Scholar 

  • Möller G (1992) Cytokines in infectious disease. Immunol Rev 126: 5–178

    Article  Google Scholar 

  • Möller G (ed) (1994) B-cell differentiation. Immunol Rev 137: 5–229

    Google Scholar 

  • Moneada S (1992) The L-arginine: nitric oxide pathway. Acta Physiol Scand 145: 201–227

    Article  Google Scholar 

  • Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002–2012

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43: 109–143

    PubMed  CAS  Google Scholar 

  • Muraguchi A, Kawamura N, Hon A, Horii Y, Ichigi Y, Kimoto M, Kishimoto T (1992) Expression of the CD2 molecule on human B lymphoid progenitors. Int Immunol 4: 841–849

    Article  PubMed  CAS  Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064

    PubMed  CAS  Google Scholar 

  • Nuñez G, London L, Hockenbery D, Alexander M, McKearn JP, Korsmeyer SJ (1990a) Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hematopoietic cell lines. J Immunol 144: 3602–3610

    PubMed  Google Scholar 

  • Nuñez G, London, Hockenbery D, Alexander M, McKearn JP, Korsmeyer SJ (1990b) Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hematopoietic cell lines. J Immunol 144: 3602–3610

    PubMed  Google Scholar 

  • Palmer RMJ (1993) The discovery of nitric oxide in the vessel wall. Arch Surg 128: 396–401

    PubMed  CAS  Google Scholar 

  • Palmer RMJ, Ferridge AG, Moneada S (1987) Nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526

    Article  PubMed  CAS  Google Scholar 

  • Parker DC (1993) T cell dependent B cell activation. Annu Rev Immunol 11: 331–360

    Article  PubMed  CAS  Google Scholar 

  • Punnonen J, de-Vries JE (1993) Characterization of a novel CD2+ human thymic B cell subset. J Immunol 151: 100–110

    PubMed  CAS  Google Scholar 

  • Rincon M, Tugores A, Landazuri MA, Lopez-Botet M (1993) Costimulation of cAMP and protein kinase C pathways inhibits the CD3-dependent T cell activation and leads to a persistent expression of the AP-1 transcription factor. Cell Immunol 149: 343–356

    Article  PubMed  CAS  Google Scholar 

  • Sen J, Rosenberg N, Burakoff S (1990) Expression and ontogeny of CD2 on murine B cells. J Immunol 144: 2925–2930

    PubMed  CAS  Google Scholar 

  • Stuehr DJ, Marietta MA (1985) Mammaliam nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82: 7738–7742

    Article  PubMed  CAS  Google Scholar 

  • Stuehr DJ, Cho JJ, Kwon NS, Nathan C (1991) Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: a FAD- and FMN containing flavoprotein. Proc Natl Acad Sci USA 88: 7773–7777

    Article  PubMed  CAS  Google Scholar 

  • Tson K, Snyder GL, Greengard P (1993) Nitric oxide/cAMP pathway stimulates phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, in the substantianigra. Proc Natl Acad Sci USA 90: 3462–3465

    Article  Google Scholar 

  • Tsubata T, Wu J, Honjo T (1993) B cell apoptosis induced by antigen receptor crosslinking is blocked by a T cell signal through CD40. Nature 364: 645–648

    Article  PubMed  CAS  Google Scholar 

  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314–317

    Article  PubMed  CAS  Google Scholar 

  • Watson ML, Rao JK, Gilkeson GS, Ruiz P, Eicher EM, Pisetsky DS, Matsuzawa A, Rochell JM, Seldin MF (1992) Genetic analysis of MRL/Ipr mice: relationship of the Fas apoptosis gene to didease manifestation and renal modifying loci. J Exp Med 176: 1645–1656

    Article  PubMed  CAS  Google Scholar 

  • Weinberg JB, Granger DL, Pisetsky DS, Seldin MF, Misukonis MA, Mason SN, Rippen AM, Ruiz P, Wood ER, Gilkeson GS (1994) The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: Increased nitric oxide production and nitric oxide syntase expression in MRL Ipr/Ipr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered N monomethyl-L-arginine. J Exp Med 179: 651–660

    Article  PubMed  CAS  Google Scholar 

  • Xie Q-W, Whisnant R, Nathan C (1993) Promoter of the mouse gene encoding calcium independent nitric oxide synthase confers inducibility by interferon and bacterial lipopolysaccharide. J Exp Med 177:1779–1784

    Article  PubMed  CAS  Google Scholar 

  • Yagita H, Nakamura T, Karasuyama H, Okumura K (1989) Monoclonal antibodies specific for murine CD2 reveal its presence on B as well as T cells. Proc Natl Acad Sci USA 86: 645–649

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bosca, L., Stauber, C., Hortelano, S., Baixeras, E., Martinez-A., C. (1995). Characterization of Signals Leading to Clonal Expansion or to Cell Death During Lymphocyte B Cell Activation. In: Kroemer, G., Martinez-A., C. (eds) Apoptosis in Immunology. Current Topics in Microbiology and Immunology, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79437-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79437-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79439-1

  • Online ISBN: 978-3-642-79437-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics