Skip to main content

Constrained Combinatorial Optimization with an Evolution Strategy

  • Conference paper

Part of the Informatik aktuell book series (INFORMAT)

Abstract

Evolutionary Algorithms [1] are powerful general purpose search and optimization techniques. Drawing ideas from evolution theory they generally process a set (‘population’) of trial solutions, exploring the search space from many different points simultaneously. Starting from an initial population of frequently randomly generated solutions (‘individuals’), evolutionary operators for replication and variation are applied to generate a set of ‘children’ from these ‘parents’. A selection scheme then decides which of the individuals must ‘die’ and which will survive to become parents in the next iteration (‘generational cycle’, see figure 1). This process is repeated for many generations and eventually produces high quality solutions when a reasonable balance is achieved between the exploitation of good solution elements that have already been discovered and the exploration of new, promising parts of the search space.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-79386-8_5
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-79386-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nissen, V.: Evolutionäre Algorithmen. Darstellung, Beispiele, betriebswirtschaftliche Anwendungsmöglichkeiten, Wiesbaden: DUV 1994 (in press).

    MATH  Google Scholar 

  2. Hoffmeister, F.; Bäck, T.: Genetic Algorithms and Evolution Strategies: Similarities and Differences, in: Schwefel, H.P.; Männer, R. (eds.): Parallel Problem Solving from Nature, Berlin: Springer 1991, 455–469.

    CrossRef  Google Scholar 

  3. Kusiak, A; Heragu, S.S.: The Facility Layout Problem, in: EJOR 29 (1987), 229–251.

    Google Scholar 

  4. Burkard, R.E.: Locations with Spatial Interactions: The Quadratic Assignment Problem, in: Mirchandani, P.B.; Francis, R.L. (eds.): Discrete Location Theory, New York: Wiley 1990, 387–437.

    Google Scholar 

  5. Kouvelis, P.; Chiang, W.-C; Fitzsimmons, J.: Simulated Annealing for Machine Layout Problems in the Presence of Zoning Constraints, in: EJOR 57 (1992), 203–223.

    Google Scholar 

  6. Nugent, E.N.; Vollmann, T.E.; Ruml, J.: An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, in: Operations Research 16 (1968), 150–173.

    Google Scholar 

  7. Nissen, V.: Solving the Quadratic Assignment Problem with Clues from Nature, in: IEEE Transactions on Neural Networks, Special Issue on Evolutionary Programming (1994) 1, 66–72.

    Google Scholar 

  8. Krause, M.: Praxisnahe Fertigungs-Layoutplanung mit evolutionären Lösungsverfahren, diploma thesis, Universität Göttingen, FB Wirtschaftswissenschaften, Göttingen 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nissen, V., Krause, M. (1994). Constrained Combinatorial Optimization with an Evolution Strategy. In: Reusch, B. (eds) Fuzzy Logik. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79386-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79386-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58649-4

  • Online ISBN: 978-3-642-79386-8

  • eBook Packages: Springer Book Archive