Advertisement

Horizons for Cardiac Prostheses

  • Y. Orime
  • Y. Nosé

Abstract

There are various types of clinical cases requiring circulatory support, ranging from short-term to long-term or permanent. Based upon the clinical experiences, currently available cardiac prostheses are classified in Fig. 1 according to the duration of support [1, 2]. In general, nonpulsatile pumps can cover the spectrum of support duration, ranging from short-term to typically up to 1 month (it is possibly to extend it up to 3 months with current technology and use of multiple devices), while pulsatile devices are suitable to support a broader spectrum, ranging from 3 months to permanent use (Fig. 1). As for bridge to heart transplantation, it is necessary to utilize a cardiac prosthesis capable of supporting circulation for at least 2 weeks to 6 months (Fig. 1).

Keywords

Centrifugal Pump Circulatory Support Ventricular Assist Device Total Artificial Heart Support Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nosé Y (1992) Is a pulsatile cardiac prosthesis a dying dinosaur? Artif Organs 16:233–234PubMedCrossRefGoogle Scholar
  2. 2.
    Shiono M, Takatani S, Sasaki T, Orime Y, Swenson CA, Minato N, Ohara Y, Noon GP, Nosé Y, DeBakey ME (1992) Baylor multipurpose circulatory support system for short- to long-term use. Trans Am Soc Artif Intern Organs 3S:M301-M305Google Scholar
  3. 3.
    Akutsun T, Kolff WJ (1957) Pneumatic substitutes for veins and hearts. Trans Am Soc Artif Intern Organs 4:230–235Google Scholar
  4. 4.
    Pennington DG, MacBride LR, Swartz MT (1989) Use of the Pierce-Donachy ventricular assist device in patients with cardiogenic shock after cardiac operations. Ann Thorac Surg 47:130–135PubMedCrossRefGoogle Scholar
  5. 5.
    Farrar DJ, Lawson JH, Litwak P, Cederwall G (1990) Thoratec VAD system as a bridge to heart transplantation. J Heart Transplant 9:415–423PubMedGoogle Scholar
  6. 6.
    Champsaur G, Ninet J, Vigneron M, Cochet P Neidecker J, Boissonnat P (1990) Use of the Abiomed BVS System 5000 as a bridge to cardiac transplantation. J Thorac Cardiovasc Surg 100:122–128PubMedGoogle Scholar
  7. 7.
    Copeland JC, Smith RG, Cleavinger M, Icenogle TB, Sethi G, Rosado L (1991) Bridge to transplantation indications for Symbion TAH, Symbiom LVAD and Novacor LVAS. In: Akutsu T, Koyanagi H (eds) Artificial heart, vol 3. Springer, Berlin Heidelberg New York, pp 303–308Google Scholar
  8. 8.
    MacCarthy PM, Portner PM, Tobler HG, Starns VA, Ramasamy N, Oyer PE (1991) Clinical experience with the Novacor ventricular assist system: bridge to transplantation and the transition to permanent application. J Thorac Cardiovasc Surg 102:578–587Google Scholar
  9. 9.
    Frazier OH, Rose EA, Macmanus Q, Burton NA, Lefrak EA, Poirier VL, Dasse KA (1992) Multicenter clinical evaluation of the HeartaMate 1000 IP left ventricular assist device. Ann Thorac Surg 53:1080–1090PubMedCrossRefGoogle Scholar
  10. 10.
    Oaks TE, Pae WE, Miller CA, Pierce WS (1991) Combined registry for the clinical use of mechanical ventricular assist pumps and the total artificial heart in conjunction with heart transplantation: fifth official report - 1990. J Heart Lung Transplant 10:621–625PubMedGoogle Scholar
  11. 11.
    Magovern JA, Pierce WS (1990) Mechanical circulatory assistance before heart transplantation. In: Baumgartner WA (ed) Heart transplantation. Saunders, Philadelphia, pp 73–85Google Scholar
  12. 12.
    Rowles JR, Mortimer BJ, Olsen DB (1993) Ventricular assist and total artificial heart devices for clinical use in 1993. ASAIO Trans 39:840–855Google Scholar
  13. 13.
    Nosé Y (1989) The need for a second-generation pump oxygenator. Artif Organs 13:89–90PubMedCrossRefGoogle Scholar
  14. 14.
    Damm G, Mizuguchi K, Aber G, Bacak J, Akkerman J, Bozeman R, Svejkovsky P, Takatani S, Nosé Y, Noon PG, DeBakey ME (1994) Axial flow ventricular assist device: system performance considerations. Artif Organs 18 (in press)Google Scholar
  15. 15.
    Orime Y, Takatani S, Sasaki T, Aizawa T, Ohara Y, Naito K, Glueck J, Noon GP, Nosé Y, DeBakey ME (1994) Cardiopulmonary bypass with Nikkiso and BioMedicus centrifugal pumps. Artif Organs 18 (in press)Google Scholar
  16. 16.
    Magovern GJ, Park SB, Maher TD (1985) Use of the centrifugal pump without anticoagulants for postoperative left ventricular assist. World Surg 9:25–30CrossRefGoogle Scholar
  17. 17.
    Drinkwater DC, Laks H (1988) Clinical experience with centrifugal pump ventricular support at UCLA Medical Center. Trans Am Soc Artif Intern Organs 43:505–508Google Scholar
  18. 18.
    Noon GP, Sekela ME, Glueck J, Coleman CL, Feldman L (1990) Comparison of Delphin and BioMedicus pumps. Trans Am Soc Artif Intern Organs 36:M616-M619Google Scholar
  19. 19.
    Noon GP (1991) Bio-Medicus ventricular assistance. Ann Thorac Surg 52:180–181PubMedCrossRefGoogle Scholar
  20. 20.
    Golding LAR (1992) Biomedicus centrifugal pump for mechanical cardiac support. In: Sezai Y (ed) Artificial heart. The development of Biometion in the 21st century. Saunders, Tokyo, pp 248–252Google Scholar
  21. 21.
    Orime Y (1994) Baylor contributions to artificial organs. Artif Organs 18 (in press)Google Scholar
  22. 22.
    Jikuya T, Sasaki T, Aizawa T, Shiono M, Glueck JA, Smith CP, Feldman L, Sakuma I, Sekela ME, Noda T, Takatani S, Noon GP, Nosé Y, DeBakey ME (1992) Development of an atraumatic small centrifugal pump for second-generation cardiopulmonary bypass. Artif Organs 16:599–606PubMedCrossRefGoogle Scholar
  23. 23.
    Sasaki T, Jikuya T, Aizawa T, Shiono M, Sakuma I, Takatani S, Glueck J, Noon GP, Nosé Y, DeBakey ME (1992) A compact centrifugal pump for cardiopulmonary bypass. Artif Organs 16:592–598PubMedCrossRefGoogle Scholar
  24. 24.
    Naito K, Miyazoe Y, Aizawa T, Mizuguchi K, Tasai K, Ohara Y, Orime Y, Glueck J, Takatani S, Noon GP, Nosé Y (1993) Development of Baylor-Nikkiso centrifugal pump with purging system for circulatory support. Artif Organs 17:614–618PubMedCrossRefGoogle Scholar
  25. 25.
    Minato N, Sakuma I, Sasaki T, Shiono M, Ohara Y, Takatani S, Noon GP, Nosé Y, DeBakey ME (1992) A seal-less centrifugal pump (Baylor Gyro Pump) for the application to long-term circulatory support. Artif Organs 17:36–42CrossRefGoogle Scholar
  26. 26.
    Sakuma I, Minato N, Ohara Y, Sasaki T, Orime Y, Shiono M, Damm G, Swenson C, Glueck J, Takatani S, Noon GP, Nosé Y (1993) Development of a sealless motor-driven centrifugal blood pump (Baylor Gyro Pump). In: Akutsu T, Koyanagi H (eds) Artificial heart, 4. Springer, Berlin Heidelberg New York, pp 301–303Google Scholar
  27. 27.
    Ohara Y, Sakuma I, Makinouchi K, Damm G, Glueck J, Mizuguchi K, Naito K, Tasai K, Orime Y, Takatani S, Noon GP, Nosé Y (1993) Baylor Gyro pump: a completely sealless centrifugal pump aiming for long-term circulatory support. Artif Organs 17:599–604PubMedCrossRefGoogle Scholar
  28. 28.
    Ohara Y, Makinouchi K, Orime Y, Tasai K, Naito K, Mizuguchi K, Shimono T, Damm G, Glueck J, Takatani S, Noon GP, Nosé Y (1994) An ultimate, compact, seal-less centrifugal ventricular assist device: Baylor C-Gyro pump. Artif Organs 18 (in press)Google Scholar
  29. 29.
    Damm G, Mizuguchi K, Bozeman R, Akkerman J, Aber G, Svejkovsky P, Takatani S, Nosé Y, Noon GP, DeBakey ME (1993) In vitro performance of the Baylor/NASA axial flow pump. Artif Organs 17:609–613PubMedCrossRefGoogle Scholar
  30. 30.
    Damm G, Mizuguchi K, Aber G, Bacak J, Akkerman J, Bozeman R, Svejkovsky P, Takatani S, Nosé Y, Noon GP, DeBakey ME (1994) Axial flow ventricular assist device: system performance considerations. Artif Organs 18 (in press)Google Scholar
  31. 31.
    Mizuguchi K, Damm G, Bozeman R, Akkerman J, Aber G, Svejkovsky P, Bacak J, Orime Y, Takatani S, Nosé Y, Noon GP, DeBakey ME (1994) Development of the Baylor/NASA axial flow ventricular assist device: in vitro performance and systematic hemolysis test results. Artif Organs 18 (in press)Google Scholar
  32. 32.
    Shiono M, Shah A, Sasaki T, Takatani S, Sekela M, Noon GP, Young J, Nosé Y, DeBakey ME (1991) Anatomical fit study for development for one-piece total artificial heart. Trans Am Soc Artif Intern Organs 37:M254–255Google Scholar
  33. 33.
    Takatani S, Shiono M, Sasaki T, Orime Y, Sakuma I, Noon GP, Nosé Y, DeBakey ME (1993) Left and right pump output control in one-piece electromechanical total artificial heart. Artif Organs 17:176–184PubMedCrossRefGoogle Scholar
  34. 34.
    Takatani S, Shiono M, Sasaki T, Sakuma I, Glueck J, Noon GP, Nosé Y, DeBakey ME (1992) Development of totally implantable electromechanical total artificial heart: Baylor TAH. Artif Organs 16:398–406PubMedCrossRefGoogle Scholar
  35. 35.
    Orime Y, Takatani S, Shino M, Sasaki T, Minato N, Ohara Y, Swenson C, Noon GP, DeBakey ME, Nosé Y (1992) Versatile one-piece total artificial heart for bridge to transplantation and/or permanent heart replacement. Artif Organs 16:606–613Google Scholar
  36. 36.
    Orime Y, Takatani S, Tasai K, Ohara Y, Naito K, Mizuguchi K, Makinouchi K, Damm G, Glueck J, Summers D, Noon GP, DeBakey ME, Nosé Y (1993) The Baylor-ABI electromechanical total artificial heart: accelerated endurance test. Trans Am Soc Artif Intern Organs 39:M172–176Google Scholar
  37. 37.
    Orime Y, Takatani S, Tasai K, Ohara Y, Naito K, Mizuguchi K, Makinouchi K, Rosenow SE, Glueck J, Noon GP, DeBakey ME, Nosé Y (1994) Flow visualization in the Baylor total artificial heart. Artif Organs 18 (in press)Google Scholar
  38. 38.
    Sasaki T, Takatani S, Shiono M, Sakuma I, Glueck J, Noon GP, Nosé Y, DeBakey ME (1992) Development of totally implantable electromechanical artificial heart systems: Baylor ventricular assist system. Artif Organs 16:407–413PubMedCrossRefGoogle Scholar
  39. 39.
    Tasai K, Takatani S, Orime Y, Damm G, Ohara Y, Naito K, Makinouchi K, Mizuguchi K, Matsuda Y, Shimono T, Glueck J, Noon GP, Nosé Y (1994) Successful thermal management of a totally implantable ventricular assist system. Artif Organs 18:•• (in press)Google Scholar
  40. 40.
    Takatani S, Orime Y, Tasai K, Ohara Y, Naito K, Mizuguchi K, Makinouchi K, Damm G, Ling J, Noon GP, Nosé Y (1994) Totally implantable TAH and VAD with multipurpose miniature electromechanical energy system. Artif Organs 18:•• (in press)Google Scholar
  41. 41.
    Butler KC, Maher TR, Kormos RL, Griffith BP, Litwak P, Konishi H, Yamazaki K, Antaki JF, Borovetz HS (1993) Development of an implantable axial flow blood pump. The proceedings; AAMI/NHLBI Cardiovascular Science and Technology Conference, p 159Google Scholar
  42. 42.
    Goldstein AH, Pacella JJ, Lazzara RR, Reddy R, Cattivera G, Magovern GJ Clark RE (1993) Four-month survival with an implanted centrifugal ventricular assist device. The proceedings; AAMI/NHLBI Cardiovascular Science and Technology Conference, p 188Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Y. Orime
  • Y. Nosé

There are no affiliations available

Personalised recommendations