Advertisement

Numerical Zero-Temperature Results for the 3d Edwards-Anderson Ising Spin Glass

  • B. A. Berg
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 78)

Abstract

A study of the zero temperature properties of the 3d Edwards-Anderson Ising spin glass, by means of multicanonical simulations is reported. Finite size scaling fits of the data are carried out for two hypothetical scenarios: Parisi mean field theory versus a droplet scaling ansatz. With a zero temperature scaling exponent y = 0.72 ±0.12 the data are well described by the droplet scaling ansatz. Alternatively, a description in terms of the Parisi mean field behavior is still possible. The two scenarios give significantly different predictions on lattices of size ≥ 123.

Keywords

Monte Carlo Spin Glass Mean Field Theory Tunneling Time Finite Size Scaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Mézard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and Beyond (World Scientific, 1987).Google Scholar
  2. [2]
    K.H. Fischer and J.A. Hertz, Spin Glasses (Cambridge University Press, 1991).Google Scholar
  3. [3]
    D.L. Stein (editor), Spin Glasses and Biology, Directions in Condensed Matter Physics — Vol. 6, (World Scientific, 1992).Google Scholar
  4. [4]
    R.N. Bhatt and A.P. Young, Phys. Rev. Lett. 54, 924 (1985)CrossRefADSGoogle Scholar
  5. [5]
    A.T. Ogielski and I. Morgenstern, Phys. Rev. Lett. 54, 928 (1985).CrossRefADSGoogle Scholar
  6. [6]
    A.T. Ogielski, Phys. Rev. B 32, 7384 (1985).CrossRefADSGoogle Scholar
  7. [7]
    R.N. Bhatt and A.P. Young, Phys. Rev. B 37, 5606 (1988).CrossRefADSGoogle Scholar
  8. [8]
    E. Marinari, G. Parisi and F. Ritort, preprint, cond-mat/9310041 (1993).Google Scholar
  9. [9]
    W.L. McMillan, J. Phys. C 17, 3179 (1984).CrossRefADSGoogle Scholar
  10. [10]
    A.J. Bray and M.A. Moore, J. Phys. C 18, L699 (1985).Google Scholar
  11. [11]
    D.S. Fisher and D.A. Huse, Phys. Rev. Lett. 56, 1601 (1986).CrossRefADSGoogle Scholar
  12. [12]
    A.J. Bray and M.A. Moore, in Heidelberg Colloquium on Glassy Dynamics, edited by J.L. van Hemmen and I. Morgenstern, Lecture Notes in Physics, Vol. 275 (Springer, New York, 1987).Google Scholar
  13. [13]
    D.S. Fisher and D.A. Huse, Phys. Rev. B 38, 386 (1988).CrossRefADSGoogle Scholar
  14. [14]
    A. Bovier and J. Fröhlich, J. Stat. Phys. 44, 347 (1986).CrossRefADSGoogle Scholar
  15. [15]
    S. Caracciolo, G. Parisi, S. Patarnello and N. Sourlas, J. Phys. France 51, 1877 (1990).CrossRefGoogle Scholar
  16. [16]
    D.A. Fisher and D.A. Huse, J. Physique I France 1, (1991) 621.CrossRefADSGoogle Scholar
  17. [17]
    N. Kawashima and N. Ito, J. Phys. Soc. Japan 62, 435 (1993). au[18]_R.R.P. Singh and D.A. Huse, J. Appl. Phys. 69, 5225 (1991).CrossRefADSGoogle Scholar
  18. [19]
    R.E. Hetzel, R.N. Bhatt and R.R.P. Singh, Europhys. Lett. 22, 383 (1993).CrossRefADSGoogle Scholar
  19. [20]
    B. Berg and T. Neuhaus, Phys. Lett. B 267, 249 (1991).CrossRefADSGoogle Scholar
  20. [21]
    B. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992).CrossRefADSGoogle Scholar
  21. [22]
    B. Berg and T. Celik, Phys. Rev. Lett. 69, 2292 (1992).CrossRefADSGoogle Scholar
  22. B. Berg and T. Celik, Int. J. Mod. Phys. C 3, 1251 (1992).CrossRefADSGoogle Scholar
  23. [23]
    B. Berg, U. Hansmann, and T. Celik, preprint, submitted to Phys. Rev. B.Google Scholar
  24. [24]
    G.M. Torrie and J.P. Valleau, J. Comp. Phys. 23, 187 (1977).CrossRefADSGoogle Scholar
  25. [25]
    E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).CrossRefADSGoogle Scholar
  26. [26]
    W. Kerler and P. Rehberg, preprint, cond-mat/9402049 (1994).Google Scholar
  27. [27]
    B. Berg, T. Celik and U. Hansmann, Europhys. Lett. 22, 63 (1993).CrossRefADSGoogle Scholar
  28. [28]
    B. Berg and C. Vohwinkel, in preparation.Google Scholar
  29. [29]
    W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes (Cambridge University Press, 1988).Google Scholar
  30. [30]
    S. Kirkpatrick, Phys. Rev. B 16, 4630 (1977).CrossRefADSGoogle Scholar
  31. [31]
    I. Morgenstern and K. Binder, Z. Phys. B 39, 227 (1980).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • B. A. Berg
    • 1
    • 2
  1. 1.Department of PhysicsThe Florida State UniversityTallahasseeUSA
  2. 2.Supercomputer Computations Research Institute (SCRI)TallahasseeUSA

Personalised recommendations