Regulatory Elements in the Immunoglobulin Kappa Locus Induce c-myc Activation in Burkitt’s Lymphoma Cells

  • K. Hörtnagel
  • A. Polack
  • J. Mautner
  • R. Feederle
  • G. W. Bornkamm
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 194)

Abstract

The characteristic reciprocal translocations in Burkitt’s lymphomas (BL) always involve the c-myc proto-oncogene on chromosome 8 and one of the immunoglobulin (Ig) loci on chromosomes 2, 14, or 22. The breakpoints relative to both c-myc and the immunoglobulin genes vary considerably and may be located either within the c-myc transcription unit or up to several hundred kilobases 5′ or 3′ of c-myc. The translocated c-myc allele in BL cells displays several characteristic features: (i) c-myc is predominantly expressed from the translocation chromosome, whereas the normal allele is transcriptionally silent or expressed at low level only, (ii) structural alterations occur consistently in and around c-myc exon 1, (iii) the block to RNA elongation is functionally missing, and (iv) the P1 promoter is the preferential site of transcriptional initiation, in contrast to the normal c-myc gene where 80–90% of total c-myc RNA is derived from the P2 promoter (promoter shift) (Taub et al., 1984a,b; Yang et al., 1985; Bornkamm et al., 1988; Nishikura and Murray, 1988; Spencer and Groudine, 1991)

Keywords

Lymphoma Kelly Hygromycin Plasmacytoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atchison, M.L. and Perry, R.P. (1987). The role of the kappa enhancer and its binding factor NF-kappa B in the developmental regulation of kappa gene transcription. Cel 48, 121–128.CrossRefGoogle Scholar
  2. Atchison, M.L. and Perry, R.P. (1988). Complementation between two cell lines lacking kappa enhancer activity: implications for the developmental control of immunoglobulin transcription. EMBO J. 7, 4213–4220.PubMedGoogle Scholar
  3. Blasquez, V.C., Xu, M., Moses, S.C., and Garrard, W.T. (1989). Immunoglobulin kappa gene expression after stable integration. I. Role of the intronic MAR and enhancer in plasmacytoma cells. J. Biol. Chem. 264, 21183–21189.Google Scholar
  4. Blasquez, V.C., Hale, M.A., Trevorrow, K.W., and Garrard, W.T. (1992). Immunoglobulin kappa gene enhancers synergistically activate gene expression but independently determine chromatin structure. J. Biol. Chem. 267, 23888–23893.PubMedGoogle Scholar
  5. Bornkamm, G.W., Polack, A., and Eick, D. (1988). c-myc deregulation by chromosomal translocation in Burkitt’s lymphoma. In Cellular oncogene activation. G. Klein, ed. (New York, Basel: Dekker,M.,lnc. ), pp. 223–273.Google Scholar
  6. Cockerill, P.N. and Garrard, W.T. (1986). Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 44, 273–282.PubMedCrossRefGoogle Scholar
  7. Cory, S. (1986). Activation of cellular oncogenes in Hemopoietic cells by chromosome translocation. Adv. Cancer Res. 47, 189–234.PubMedCrossRefGoogle Scholar
  8. Henglein, B., Synovzik, H., Groitl, P., Bornkamm, G.W., Hartl, P., and Lipp, M. (1989). Three breakpoints of variant t(2;8) translocations in Burkitt’s lymphoma cells fall within a region 140 kilobases distal from c-myc. Mol. Cell. Biol. 9, 2105–2113.PubMedGoogle Scholar
  9. Judde, J.-G. and Max, E.E. (1992). Characterization of the human immunoglobulin kappa gene 3’ enhancer: Functional importance of three motifs that demonstrate B- cell-specific in vivo footprints. Mol. Cell. Biol. 72, 5206–5216.Google Scholar
  10. Magrath, I. (1990). The pathogenesis of Burkitt’s lymphoma. Adv. Cancer Res. 55, 134–270.Google Scholar
  11. Meyer, K.B. and Neuberger, M.S. (1989). The immunoglobulin kappa locus contains a second, stronger B-cell-specific enhancer which is located downstream of the constant region. EMBO J. 6, 1959–1964.Google Scholar
  12. Nishikura, K. and Murray, J.M. (1988). The mechanism of inactivation of the normal c-myc gene locus in human Burkitt lymphoma cells. Oncogene 2, 493–498.PubMedGoogle Scholar
  13. Picard, D. and Schaffner, W. (1984). A lymphocyte-specific enhancer in the mouse immunoglobulin kappa gene. Nature 307, 80–82.PubMedCrossRefGoogle Scholar
  14. Polack, A., Strobl, L., Feederle, R., Schweizer, M., Koch, E., Eick, D., Wiegand, H., and Bornkamm, G.W. (1991). The intron enhancer of the immunoglobulin kappa gene activates c-myc but does not induce the Burkitt specific promoter shift. Oncogene 6, 2033–2040.PubMedGoogle Scholar
  15. Pongubala, J.M. and Atchison, M.L. (1991). Functional characterization of the developmentally controlled immunoglobulin kappa 3′ enhancer: regulation by Id, a repressor of helix-loop-helix transcription factors. Mol. Cell Biol. 11, 1040–1047.PubMedGoogle Scholar
  16. Richman, A. and Hayday, A. (1989). Normal expression of a rearranged and mutated c-myc oncogene after transfection into fibroblasts. Science 246, 494–497.PubMedCrossRefGoogle Scholar
  17. Richman, A. and Hayday, A. (1989). Serum-inducible expression of transfected human c-myc genes. Mol. Cell. Biol. 9, 4962–4969.PubMedGoogle Scholar
  18. Sen, R. and Baltimore, D. (1989). Factors regulating immunoglobulin-gene transcription. In Imunoglobulin Genes. T. Honjo, F.W. Alt, and T.H. Rabbitts, eds. ( London: Academic Press ), pp. 327–342.Google Scholar
  19. Siebenlist, U., Hennighausen, L., Battey, J., and Leder, P. (1984). Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma. Cell 37, 381–391.PubMedCrossRefGoogle Scholar
  20. Siebenlist, U., Bressler, P., and Kelly, K. (1988). Two distinct mechanisms of transcriptional control operate on c-myc during differentiation of HL60 cells. Mol. Cell. Biol. 3, 867–874.Google Scholar
  21. Spencer, C.A., LeStrange, R.C., Novak, U., Hayward, W.S., and Groudine, M. (1990). The block to transcription elongation is promoter dependent in normal and Burkitt’s lymphoma c-myc alleles. Genes Dev. 4, 75–88.PubMedCrossRefGoogle Scholar
  22. Taub, R., Moulding, C., Battey, J., Murphy, W., Vasicek, T., Lenoir, G.M., and Leder, P. (1984). Activation and somatic mutation of the translocated c-myc gene in Burkitt lymphoma cells. Cell 36, 339–348.PubMedCrossRefGoogle Scholar
  23. Taub, R., Kelly, K., Battey, J., Latt, S., Lenoir, G.M., Tantravahi, U.T., and Leder, P. (1984). A novel alteration in the structure of an activated c-myc gene in a variant t(2;8) Burkitt lymphoma. Cell 37, 511–520.PubMedCrossRefGoogle Scholar
  24. Yang, J.-Q., Bauer, S., Mushinski, J.F., and Marcu, K.B. (1985). Chromosome translocations clusterd 5% of the murine c-myc qualitatively affect promoter usage: implications for the site of normal c-myc regulation. EMBO J. 4, 1441–1447.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • K. Hörtnagel
    • 1
  • A. Polack
    • 1
  • J. Mautner
    • 1
  • R. Feederle
    • 1
  • G. W. Bornkamm
    • 1
  1. 1.Institut für Klinische Molekularbiologie und TumorgenetikGSFMünchenGermany

Personalised recommendations