Plant Stress. The Adaptive Potential of Dynamic Systems

  • E. Pahlich
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 56)


Growth and development of plants under natural conditions are the results of the interference of two major regimes of influences: the gene potential of the individual and the external environment.


Metabolic Network Flux Rate Genetic Line Thermodynamic Activity Control Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anfinsen CB (1973) Angew Chem 24: 1065–1073.CrossRefGoogle Scholar
  2. Aktinson DE (1986) In: Damjanovich S, Keleti T, Tron L (eds) Dynamics of biochemical systems. Elsevier, Amsterdam, pp 129–143.Google Scholar
  3. Blackwood GC, Miflin BJ (1976) Plant Sci Lett 7: 435–446.CrossRefGoogle Scholar
  4. Blumenthal R, Changeux J-P, Lefever R (1970) J Membr Biol 2: 351–357.CrossRefGoogle Scholar
  5. Boiteux A, Hess B, Sel’kov EE (1980) Curr Top Cell Regul 17: 171–201.PubMedGoogle Scholar
  6. Boyer JS (1982) Science 218: 443–448.PubMedCrossRefGoogle Scholar
  7. Braam J, Davis R (1990) Cell 12: 357–364.CrossRefGoogle Scholar
  8. Bradshaw AD (1965) Adv Genet 13: 115–155.CrossRefGoogle Scholar
  9. Bucher T, Riissmann W (1963) Angew Chem 19: 881–893.CrossRefGoogle Scholar
  10. Burn P (1988) TIBS 13: 79–83.PubMedGoogle Scholar
  11. Burns JA, Cornish-Bowden A, Groen AK, Heinrich R, Kacser H, Porteous JW, Rapoport SM, Rapoport TA, Stucki JW, Tager JM, Wanders RJA, Westerhoff HV (1985) TIBS 97: 639–666.Google Scholar
  12. Clausen J, Keck DD, Hieseg WM (1945) Carnegie Inst Wash Publ 564.Google Scholar
  13. Corcuera LJ, Hintz M, Pahlich E (1989) Phytochemistry 6: 1569–1571.CrossRefGoogle Scholar
  14. Clegg JS (1981) Collect Phenom 3: 289–312.Google Scholar
  15. Close TJ, Bray EA (eds) (1993) Responses to cellular dehydration during environmental stress. Curr Top Plant Physiol 10.Google Scholar
  16. Crowe JH, Hoekstra FA, Crowe LM (1989) Proc Natl Acad Sci USA 86: 520–523.PubMedCrossRefGoogle Scholar
  17. de Mendoza D, Cronan JE Jr (1983) TIBS 8: 49–52.Google Scholar
  18. Degn H, Olsen LF, Perram JW (1979) In: Gurel O, Rössler OE (eds) Bifurcation theory and applications in scientific disciplines. Ann NY Acad Sci 316:623–638.Google Scholar
  19. Eigen M (1976) Ber Bunsen-Ges 80: 1059–1081.Google Scholar
  20. Eigen M (1988a) Prespektiven der Wissenschaft. Deutsche Verlagsanstalt, Stuttgart.Google Scholar
  21. Eigen M (1988b) In: Hierholzer K, Wittmann H-G (eds) Phasensprünge und Stetigkeit in der natürlichen und kulturellen Welt. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 113–149.Google Scholar
  22. Ellis JJ, van der Vlies SM (1991) Annu Rev Biochem 60: 321–347.PubMedCrossRefGoogle Scholar
  23. Fischer EH (1993) Angew Chem 105: 1181–1188.CrossRefGoogle Scholar
  24. Franks F (1972) Water. A comprehensive treatise. Vol 1. Plenum Press, New York.Google Scholar
  25. Glass I, Mackey MC (1988) From clocks to chaos. Princeton University Press. Goldberg ME (1985) TIBS 10: 388–391.Google Scholar
  26. Grime JP (1979) Plant strategies and vegetation processes. John Wiley, Chichester.Google Scholar
  27. Heinrich R, Rapoport TA (1974) Eur J Biochem 42: 89–95.PubMedCrossRefGoogle Scholar
  28. Henrich S (1993) Diplomarbeit, JLU GießenGoogle Scholar
  29. Hess B, Markus M (1987) In: Küppers B-O (ed) Ordnung aus dem Chaos. Piper, München, pp 157–174.Google Scholar
  30. Higgins CF, Cairney J, Stirling DA, Sutherland L, Booth IR (1987) TIBS 12: 339–344.Google Scholar
  31. Higgins J (1963) Ann NY Acad Sci 108: 339–344.Google Scholar
  32. Ho T-H D, Sachs MM (1989) In: Jones HG, Jones MB, Flowers TL (eds) Plants under stress. Cambridge University Press, Cambridge, pp 157–180.CrossRefGoogle Scholar
  33. Jennings DH, Trewavas AJ (eds) (1986) Plasticity in Plants. Symp Soc Exp Biol Nr XXXX Cambridge.Google Scholar
  34. Jones HG, Flowers TJ, Jones MB (eds) (1989) Plants under stress. Cambridge University Press, Cambridge. Jones RL, Armstrong JE (1971) Plant Physiol 48: 137–141.Google Scholar
  35. Kacser H (1960) Kinetic models of development and heredity. Symp Soc Exp Biol Vol XIV p 13.Google Scholar
  36. Kacser H (1983) Biochem Soc Trans 11: 35–40.PubMedGoogle Scholar
  37. Kacser H, Burns JA (1973) Symp Soc Exp Bot Vol XXVII, pp 65–104.Google Scholar
  38. Kacser H, Burns JA (1979) Biochem Soc Trans 7: 1149–1160.PubMedGoogle Scholar
  39. Kacser H, Burns JA (1980) Genetics 97: 639–666.Google Scholar
  40. Kacser H, Porteous JW (1987) TIBS 12: 5–12.Google Scholar
  41. Katterman F (ed) (1990) Environmental injury to plants. Academic Press, San Diego. Klotz IM (1966) Arch Biochem Biophys 116: 92–96.Google Scholar
  42. Krebs EG (1993) Angew Chem 105: 1173–1183.CrossRefGoogle Scholar
  43. Körner EH (1993) In: Schulze ED, Mooney HA (eds) Biodiversity and Ecosystem Function. Springer, Berlin Heidelberg New York, pp 117–140.Google Scholar
  44. Kubota K, Ashihara H (1990) Biochem Biophys Acta 1036: 138–142.PubMedCrossRefGoogle Scholar
  45. Laidler KJ (1958) The chemical kinetics of enzyme action. Oxford University Press, London. Larcher W (1987) Naturwissenschaften 74: 158–167.Google Scholar
  46. Levitzki A (1978) Quantitative aspects of allosteric mechanisms. Springer, Berlin Heidelberg New York. Lewin S (ed) ( 1974 ) Displacement of water and its control of biochemical reactions. Academic Press, London.Google Scholar
  47. Lüttge U, Beck F (1992) Planta 188: 28–38.CrossRefGoogle Scholar
  48. Masters CJ, Reid S, Don M (1987) Mol Cell Biochem 76: 3–14.PubMedCrossRefGoogle Scholar
  49. Michaelis L, Menten ML (1913) Biochem Z 49: 333–369.Google Scholar
  50. Moore WJ, Hummel DO (1976) Physikalische Chemie. Walter de Gruyter, Berlin, 2.Google Scholar
  51. Neumann E (1973) Angew Chem 10: 430–444.CrossRefGoogle Scholar
  52. Nicoles G, Prigogine I (1989) Exploring complexity. WH Freeman, New York.Google Scholar
  53. Nobel PS (1991) Physicochemical and environmental plant physiology. Academic Press, San Diego.Google Scholar
  54. Orsi BA, Clealand WW (1972) Biochemistry. 11: 102–109.PubMedCrossRefGoogle Scholar
  55. Pahlich E, Jäger H-J, Kaschel E (1981) Z Pflanzenphysiol 107: 137–144.Google Scholar
  56. Pahlich E, Jäger H-J, Horz M (1982) Z Pflanzenphysiol 105: 475–478.Google Scholar
  57. Pahlich E, Stadermann T (1984) J Plant Physiol 115: 91–96.Google Scholar
  58. Pahlich E (1990) Bull Soc Bot Fr 137: 3–11.Google Scholar
  59. Pahlich E (1992) In: Mengel K, Pilbeam DI (eds) Nitrogen metabolism of plants. Clarendon Press, Oxford, pp 187–200.Google Scholar
  60. Pahlich E (1993) Rev Bras Fisiol Veg 5: 209–216.Google Scholar
  61. Paleg LG, Stewart GR, Bradbee JW (1984) Plant Physiol 75: 974–978.PubMedCrossRefGoogle Scholar
  62. Paleg LG, Aspinall D (eds) (1981) The physiology and biochemistry of drought resistence in plants. Academic Press, Sydney.Google Scholar
  63. Pettersson G, Ryde-Pettersson U (1987) Eur J Biochem 169: 423–429.PubMedCrossRefGoogle Scholar
  64. Porteous JW (1983) TIBS 8: 5–12.Google Scholar
  65. Purich DL, Fromm HJ (1972) Curr Top Cell Reg 6: 131–167.Google Scholar
  66. Reich JG, Sel’kov EE (1981) Energy Metabolism of the cell. A theoretical treatise. Academic Press, London. Richards RA (1993) In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress. Curr Top Plant Physiol 10:211–223.Google Scholar
  67. Rosen R (1970) Dynamical system theory in biology. John Wiley, New York.Google Scholar
  68. Schrier EE, Robinson RA (1971) J Biol Chem 246: 2870–2874.PubMedGoogle Scholar
  69. Schrier EE, Robinson RA (1974) J Solution Chem 3: 493–501.CrossRefGoogle Scholar
  70. Segel IH (1975) Enzyme Kinetics. John Wiley, New York. Shinde U, Inouye M (1993) TIBS 18: 442–446.Google Scholar
  71. Slatyer RO (1967) Plantwater relationships. Academic Press, London. Somero GN (1978) Annu Rev Ecol Syst 9: 1–29.Google Scholar
  72. Somero GN, Osmond CB, Bolis CL (eds) (1992) Water and life. Springer Berlin Heidelberg, New York.Google Scholar
  73. Tanford C (1978) Science 200: 1012–1018.PubMedCrossRefGoogle Scholar
  74. Thye E, Pahlich E (1994) Eur J Agron (in press).Google Scholar
  75. Timasheff SN (1993) Annu Rev Biophys Biomol Struct 22: 67–97.PubMedCrossRefGoogle Scholar
  76. Timasheff SN, Fasman GD (eds) (1969) Structure and stability of biological macromoleeules, vol 2. Marcel Dekker, New York.Google Scholar
  77. Von Hippel PH, Schleich T (eds) (1969) In: Timasheff SN, Fasman GD (eds) (1969) Structure and stability of biological macromolecules. Marcel Dekker, New York, pp 417– 469.Google Scholar
  78. Veit B, Greene B, Lowe B, Mathern J, Sinha N, Vollbert E, Walko R, Hake S (1991) Dev Suppl 1: 105–111.Google Scholar
  79. Weatherley PE (1965) The state and movement of water in the leaf. Symp Soc Exp Biol XIX: 157–185.Google Scholar
  80. Webb JL (1963) Enzyme and metabolic inhibitors vol 1. Academic Press, New York. Wiggins PM (1973) Biophys J 13: 385–398.Google Scholar
  81. Wolfenden RV, Cullis PM, Southgate CCF (1979) Science 206: 575–577.PubMedCrossRefGoogle Scholar
  82. Wong JT-F (1975) Kinetics of enzyme mechanisms. Academic Press, London.Google Scholar
  83. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Science 217: 1214–1222.PubMedCrossRefGoogle Scholar
  84. Zaccai G, Eisenberg H (1990) TIBS 15: 333–337PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • E. Pahlich
    • 1
  1. 1.Institut für Allg. Botanik und Pflanzenphysiologieder JLUGießenGermany

Personalised recommendations