Selected Topics of Polyketide Biosynthesis

  • Horst-Robert Schütte
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 56)


It is well known that many species of bacteria, fungi, and higher plants produce a variety of secondary metabolites from acetyl-CoA and malonyl-CoA; these compounds are considered to be formed via a polyoxomethylene chain, a hypothetical intermediate (Mosbach 1969; Schütte 1971, 1982; Turner 1972; Bu’Lock 1979; Herbert 1981; Leistner 1981; Turner and Aldridge 1983; Simpson 1984, 1985, 1987a, b, 1991; Gill and Steglich 1987; Luckner 1990; O’Hagan 1992). In many cases, they exhibit antibiotic, antitumor, or mycotoxic activities.


Antifungal Metabolite Penicillic Acid Polyketide Biosynthesis Acetate Unit Orsellinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abell C, Staunton J (1981) Chem Commun 856–858.Google Scholar
  2. Abell C, Staunton J (1984) Chem Commun 1005–1007.Google Scholar
  3. Abell C, Garson MJ, Leeper FJ, Staunton J (1982) Chem Commun 1011–1013.Google Scholar
  4. Abell C, Doddrell DM, Garson MJ, Laue ED, Staunton J (1983) Chem Commun 694–696.Google Scholar
  5. Abell C, Sutkowski AC, Staunton J (1987) Chem Commun 586–587.Google Scholar
  6. Abraham WR, Arfmann HA (1988) Phytochemistry 27: 3310–3311.CrossRefGoogle Scholar
  7. Abraham WR, Knoch I, Witte L (1990) Phytochemistry 29: 2877–2878.CrossRefGoogle Scholar
  8. Ahmed SA, Simpson TJ, Staunton J, Sutkowski AC, Trimble LA, Vederas JC (1985) Chem Commun 1685–1687.Google Scholar
  9. Aldridge DC, Galt S, Giles D, Turner WB (1971) J Chem Soc C 1623–1627.Google Scholar
  10. Almassi F, Ghisalberti EL, Narbey MJ, Sivasithamparam K (1991) J Nat Prod 54: 396–402.CrossRefGoogle Scholar
  11. Arakawa H (1968) Bull Chem Soc Jpn 41: 2451.Google Scholar
  12. Argoudelis AD, Zieserl JF (1966) Tetrahedron Lett 1969–1973.Google Scholar
  13. Avent AG, Hanson JR, Truneh A (1990) Phytochemistry 29: 2133–2134.CrossRefGoogle Scholar
  14. Avent AG, Hanson JR, Truneh A (1992a) Phytochemistry 31: 791–793.Google Scholar
  15. Avent AG, Hanson JR, Truneh A (1992b) Phytochemistry 31: 1065–1066.Google Scholar
  16. Avent AG, Hanson JR, Truneh A (1992c) Phytochemistry 31: 3447–3449.CrossRefGoogle Scholar
  17. Bartel PL, Zhu C, Lampel JS, Dosch DC, Conners NC, Strohl WR, Beale JM, Floss HG (1990) J Bacteriol 172: 4816–4826.PubMedGoogle Scholar
  18. Beck J, Ripka S, Siegner A, Schiltz E, Schweizer E (1990) Eur J Biochem 192: 487–498.PubMedCrossRefGoogle Scholar
  19. Bentley R, Keil JG (1962) J Biol Chem 237: 867–873.PubMedGoogle Scholar
  20. Bibb MJ, Biro S, Motamedi H, Collins JF, Hutchinson CR (1989) EMBO 8: 2727–2736.Google Scholar
  21. Birch AJ, Donovan FW (1953) Aust J Chem 6: 360–368.CrossRefGoogle Scholar
  22. Birch AJ (1967) Science 156: 202–206.PubMedCrossRefGoogle Scholar
  23. Birch AJ, Blance GE, Smith H (1958) J Chem Soc 4582–4583.Google Scholar
  24. Blair J, Newbold GT (1955) J Chem Soc 2871–2875.Google Scholar
  25. Brereton RG, Garson MJ, Staunton J (1980) Chem Commun 1165–1167.Google Scholar
  26. Brereton RG, Garson MJ, Staunton J (1984) J Chem Soc Perkin Trans I 1027–1033.CrossRefGoogle Scholar
  27. Bu’Lock (1979) In: Barton DHR, Ouis WD (eds) Comprehensive organic chemistry. Vol 5. Pergamon Press, Oxford, pp 927–987.Google Scholar
  28. Cane DE, Yang CC (1987) J Am Chem Soc 109: 1255–1257.CrossRefGoogle Scholar
  29. Claydon N, Hanson JR, Truneh A, Avent AG (1991) Phytochemistry 30: 3802–3803.CrossRefGoogle Scholar
  30. Cole RJ, Moore JH, Davis ND, Kirksey JW, Diener U (1971) J Agric Food Chem 19: 909–911.CrossRefGoogle Scholar
  31. Condon P, Kuc J, (1960) Phytopathology 50: 267–270.Google Scholar
  32. Condon P, Kuc J, Draudt HN (1963) Phytopathology 53: 1244–1250.Google Scholar
  33. Copeland RJ, Hill RA, Hinchliffe DJ, Staunton J (1984) J Chem Soc Perkin Trans I 1013–1019.CrossRefGoogle Scholar
  34. Coxon DT, Curtis FR, Price KR, Levett G (1973) Phytochemistry 12: 1881–1885.CrossRefGoogle Scholar
  35. Devys M, Bousquet JF, Kollmann A, Barbier M (1980) Phytochemistry 19: 2221–2222.CrossRefGoogle Scholar
  36. Dickinson JM, Hanson JR, Hitchcock PB, Claydon N (1989) J Chem Soc Perkin Trans I 1885–1887.CrossRefGoogle Scholar
  37. Dimroth P, Walter H, Lynen F (1970) Eur J Biochem 13: 98–110.PubMedCrossRefGoogle Scholar
  38. Duncanson LA, Grove JF, Zealley J (1953) J Chem Soc 3637–3645.Google Scholar
  39. Evidente A, Randazza G, Ballio A (1986) J Nat Prod 49: 593–601.CrossRefGoogle Scholar
  40. Floss HG, Tsai MD, Woodward RW (1984) Top Stereochem 15: 253–321.CrossRefGoogle Scholar
  41. Franco CMM, Borde UP, Vijayakumar EKS, Chatteijee S, Blumbach J, Ganguli BN (1991) J Antibiot 44: 225–231.PubMedGoogle Scholar
  42. Garson MJ, Staunton J (1981) Chem Commun 708–710.Google Scholar
  43. Garson MJ, Staunton J, Jones PG (1984) J Chem Soc Perkin Trans I 1021–1026.CrossRefGoogle Scholar
  44. Gill M, Steglich W (1987) Progr Chem Org Nat Prod 51: 1–286.Google Scholar
  45. Herbert RB (1981) The biosynthesis of secondary metabolites. Chapman and Hall, London, pp 28–49.CrossRefGoogle Scholar
  46. Holker JSE, Simpson TJ (1981) J Chem Soc Perkin Trans I 1397–1400.CrossRefGoogle Scholar
  47. Huang S, Beale JM, Keller PJ, Floss HG (1986) J Am Chem Soc 108: 1100–1101.CrossRefGoogle Scholar
  48. Jacobs A, Staunton J, Sutkowski AC (1991) Chem Commun 113–114.Google Scholar
  49. Jaworski JG, Kuc J (1974) Plant Physiol 53: 331–336.PubMedCrossRefGoogle Scholar
  50. Jordan PM, Spencer JB (1990a) Chem Commun 238–242.Google Scholar
  51. Jordan PM, Spencer JB (1990b) Chem Commun 1704–1706.Google Scholar
  52. Jordan PM, Spencer JB, Corina DL (1986) Chem Commun 911–913.Google Scholar
  53. Kurosaki F, Nishi A (1983) Phytochemistry 22: 669–672.CrossRefGoogle Scholar
  54. Kurosaki F, Nishi A (1984) Physiol Plant Pathol 24: 169–176.CrossRefGoogle Scholar
  55. Kurosaki F, Nishi A (1988) FEBS Lett 227: 183–186.CrossRefGoogle Scholar
  56. Kurosaki F, Nishi A (1991) Phytochemistry 30: 1823–1825.CrossRefGoogle Scholar
  57. Kurosaki F, Matsui K, Nishi A (1984) Physiol Plant Pathol 25: 313–322.CrossRefGoogle Scholar
  58. Kurosaki F, Tsurusawa Y, Nishi A (1985a) Phytochemistry 24: 1479–1480.CrossRefGoogle Scholar
  59. Kurosaki F, Futamura K, Nishi A (1985b) Plant Cell Physiol 26: 693–700.Google Scholar
  60. Kurosaki F, Tsurusawa Y, Nishi A (1987a) Plant Physiol 85: 601–604.PubMedCrossRefGoogle Scholar
  61. Kurosaki F, Tsurusawa Y, Nishi A (1987b) Phytochemistry 26: 1919–1923.CrossRefGoogle Scholar
  62. Kurosaki F, Kizawa Y, Nishi A (1989a) Phytochemistry 28: 1843–1845.CrossRefGoogle Scholar
  63. Kurosaki F, Kizawa Y, Nishi A (1989b) Eur J Biochem 185: 85–89.PubMedCrossRefGoogle Scholar
  64. Leistner E (1981) In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 7. Academic Press, New York, pp 403–423.Google Scholar
  65. Luckner M (1990) In: Secondary metabolism in plants, microorganisms and animals. Gustav Fischer, Jena.Google Scholar
  66. Marinelli F, Ronchi VN, Pini D, Salvadori P (1990) Phytochemistry 29: 849–851.CrossRefGoogle Scholar
  67. Mills SD, Turner WB (1967) J Chem Soc C 2242–2244.Google Scholar
  68. Moore JH, Murray TP, Marks ME (1974) J Agric Food Chem 22: 697–698.PubMedCrossRefGoogle Scholar
  69. Mosbach K (1960) Acta Chem Scand 14: 457–464.CrossRefGoogle Scholar
  70. Mosbach K (1969) Angew Chem 81: 233–244.CrossRefGoogle Scholar
  71. Nair MSR, Carey ST (1975) Tetrahedron Lett 1655–1658.Google Scholar
  72. Nakajima H, Hamasaki T, Kimura Y (1989) Agric Biol Chem 53: 2297–2299.CrossRefGoogle Scholar
  73. Nakajima H, Hamasaki T, Maeta S, Kimura Y, Takeuchi Y (1990) Photochemistry 29: 1739–1743.CrossRefGoogle Scholar
  74. Nakajima H, Hamasaki T, Kohno M, Kimura Y (1991) Phytochemistry 30: 2563–2565.CrossRefGoogle Scholar
  75. Nakajima H, Kimura Y, Hamasaki T (1992a) Phytochemistry 31: 105–107.CrossRefGoogle Scholar
  76. Nakajima H, Matsumoto R, Kimura Y, Hamasaki T (1992b) Chem Commun 1654–1656.Google Scholar
  77. Natori S, Sakaki S, Kurata H, Udagawa S, Inchinoe M, Saito M, Umeda M (1970) Chem Pharm Bull 18: 2259–2268.PubMedCrossRefGoogle Scholar
  78. O’Hagan D (1992) Nat Prod Rep 5: 447–479.CrossRefGoogle Scholar
  79. Otten SL, Stutzman-Engwall KJ, Hutchinson CR (1990) J Bacteriol 172: 3427–3437.PubMedGoogle Scholar
  80. Parisi A, Piatelli M, Tringali E, Lio GMDS (1993) Phytochemistry 32: 865–867.CrossRefGoogle Scholar
  81. Rosenbrook W, Carney RE (1970) Tetrahedron Lett 1867–1870.Google Scholar
  82. Schröder G, Brown JWS, Schröder J (1988) Eur J Biochem 172: 161–169.PubMedCrossRefGoogle Scholar
  83. Schütte HR (1971) Fortschr Bot 33: 105–119.Google Scholar
  84. Schütte HR (1982) Biosynthese niedermolekularer Naturstoffe. Gustav Fischer, Jena, pp 50–83.Google Scholar
  85. Sherman DH, Malpartida F, Bibb MJ, Kieser HM, Bibb MJ, Hopwood DA (1989) EMBO 8: 2717–2725.Google Scholar
  86. Simpson TJ (1975) Tetrahedron Lett 175–178.Google Scholar
  87. Simpson TJ (1984) Nat Prod Rep 1: 281–297.CrossRefGoogle Scholar
  88. Simpson TJ (1985) Nat Prod Rep 2: 321–347.CrossRefGoogle Scholar
  89. Simpson TJ (1987a) Nat Prod Rep 4: 339–376.PubMedCrossRefGoogle Scholar
  90. Simpson TJ (1987b) Chem Soc Rev 16: 123–160.CrossRefGoogle Scholar
  91. Simpson TJ (1991) Nat Prod Rep 8: 573–602.CrossRefGoogle Scholar
  92. Simpson TJ, Holker JSE (1975) Tetrahedron Lett 4693–4696.Google Scholar
  93. Spavold ZM, Robinson JA (1988) Chem Commun 4–6.Google Scholar
  94. Staunton J, Sutkowski AC (1991a) Chem Commun 1106–1108.Google Scholar
  95. Staunton J, Sutkowski AC (1991b) Chem Commun 1108–1110.Google Scholar
  96. Staunton J, Sutkowski AC (1991c) Chem Commun 1110–1112.Google Scholar
  97. Stoessl A, Stothers JB (1978) Can J Bot 56: 2589–2593.CrossRefGoogle Scholar
  98. Tanabe M, Uramoto M, Hamasaki T, Cary L (1976) Heterocycles 5: 355–365.CrossRefGoogle Scholar
  99. Turner WB, (1972) Fungal metabolites, Academic Press, London.Google Scholar
  100. Turner WB, Aldridge CD (1983) Fungal metabolites, Academic Press, London.Google Scholar
  101. Wiesner P, Beck J, Beck KF, Ripka S, Müller G, Lücke S, Schweizer E (1988) Eur J Biochem 177: 69–79.PubMedCrossRefGoogle Scholar
  102. Woo ER, Fujii I, Ebizuka Y, Sankawa U, Kawaguchi A, Huang S, Beale JM, Shibuya M, Mocek U, Floss HG (1989) J Am Chem Soc 111: 5498–5500.CrossRefGoogle Scholar
  103. Yoshizawa Y, Li Z, Reese PB, Vederas JC (1990) J Am Chem Soc 112: 3212–3213.CrossRefGoogle Scholar
  104. Yue S, Duncan JS, Yamamoto Y, Hutchinson CR (1987) J Am Chem Soc 109: 1253–1255.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Horst-Robert Schütte
    • 1
  1. 1.Inst. f. PflanzenbiochemieHalle/SaaleGermany

Personalised recommendations