Advertisement

Cytology and Morphogenesis of the Prokaryotic Cell

  • Frank Mayer
  • Michael Hoppert
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 56)

Abstract

Studies on the structural organization of the flagellar filament and base and on the biogenesis of these components revealed new insight into this complex system (Macnab 1992).

Keywords

Prokaryotic Cell Flagellar Apparatus Flagellar Filament Export Apparatus Hook Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison DG, Sutherland IW (1987) J Gen Microbiol 133: 1319–1327.Google Scholar
  2. Alloway BF (1990) Heavy metals in soils. Wiley and Sons, New York.Google Scholar
  3. Baumgarten N (1989) Nature, London 341: 81–82.CrossRefGoogle Scholar
  4. Beech IB, Gaylarde CC (1989) J Appl Bacteriol 67: 202–207.Google Scholar
  5. Blair DF (1990) Sem Cell Biol 1: 75–85.Google Scholar
  6. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Annu/Rev Microbiol 41: 435–464.CrossRefGoogle Scholar
  7. Costerton JW, Irvin RT, Cheng KJ (1981) Annu/Rev Microbiol 35: 299–324.CrossRefGoogle Scholar
  8. DePamphilis ML, Adler J (1971a) J Bacteriol 105: 384–395.Google Scholar
  9. DePamphilis ML, Adler J (1971b) J Bacteriol 105: 396–407.Google Scholar
  10. Driks A, DeRosier DJ (1990) J Mol Biol 211: 669–672.PubMedCrossRefGoogle Scholar
  11. Eighmy TT, Maratea D, Bishop PP (1983) Appl Environ Microbiol 45: 1921–1931.PubMedGoogle Scholar
  12. Emerson SU, Tokuyasu K, Simon MI (1970) Science 169: 190–192.PubMedCrossRefGoogle Scholar
  13. Fletcher M (1977) Can J Microbiol 23: 1–6.CrossRefGoogle Scholar
  14. Fletcher M (1986) Appl Environ Microbiol 52: 672–676.PubMedGoogle Scholar
  15. Fude L, Harris B, Urrutia MM, Beveridge TJ (1994) Appl Environ Microbiol 60: 1525–1531.PubMedGoogle Scholar
  16. Fude L, Shigui L (1993) J Sichuan Univ Nat Sei Ed 2: 266–273.Google Scholar
  17. Geesey GG (1982) ASM News 48: 9–14.Google Scholar
  18. Geesey GG, Mutch R, Costerton JW, Green RB (1978) Limnol Oceanogr 23: 1214–1223.CrossRefGoogle Scholar
  19. Geesey GG, Stupy MW, Bremer PJ (1992) Intern Biodeterior Biodegrad 30: 135–154.CrossRefGoogle Scholar
  20. Gillen KL, Hughes KT (1991) J Bacteriol 173: 6453–6459.PubMedGoogle Scholar
  21. Hamilton WA (1987) Symp Soc Gen Microbiol 41: 361–385.Google Scholar
  22. Helmann JD (1991) Mol Microbiol 5: 2875–2882.PubMedCrossRefGoogle Scholar
  23. Helmann JD, Chamberlin MJ (1987) Proc Natl Acad Sci USA 84: 6422–6424.PubMedCrossRefGoogle Scholar
  24. Hermansson M, Kjelleberg S, Korhonen TK, Stenström TA (1982) Arch Microbiol 131: 308–312.CrossRefGoogle Scholar
  25. Homma M, DeRosier DJ, Macnab RM (1990) J Mol Biol 213: 819–832.PubMedCrossRefGoogle Scholar
  26. Homma M, lino T (1985) J Bacteriol 162: 183–189.PubMedGoogle Scholar
  27. Homma M, Kutsukake K, lino T (1985) J Bacteriol 163:464–471.PubMedGoogle Scholar
  28. Iino T (1969) J Gen Microbiol 56: 227–239.PubMedGoogle Scholar
  29. Iino T (1974) J Supramol Struct 2: 372–384.PubMedCrossRefGoogle Scholar
  30. Iino T (1985) Genetic control of flagellar morphogenesis in Salmonella. In: Eisenbach M, Balaban M (eds) Sensing and response in microorganisms. Elsevier, Amsterdam pp 83–92.Google Scholar
  31. Iino T, Komeda Y, Kutsukake K, Macnab RM, Matsumara P, Parkinson JS, Simon MI, Yamaguchi S (1988) Microbiol Rev 52: 533–535.PubMedGoogle Scholar
  32. Ikeda T, Homma M, lino T, Asakura S, Kamiya R (1987) J Bacteriol 169: 1168–1173.PubMedGoogle Scholar
  33. Jain RK, Sayler GS (1987) Microbiol Sci 4: 59–63.PubMedGoogle Scholar
  34. Jones CJ, Aizawa SI (1991) Adv Microb Physiol 32: 109–172.PubMedCrossRefGoogle Scholar
  35. Jones CJ, Homma M, Macnab RM (1987) J Bacteriol 169: 1489–1492.PubMedGoogle Scholar
  36. Jones CJ, Homma M, Macnab RM (1989) J Bacteriol 171: 3890–3900.PubMedGoogle Scholar
  37. Jones CJ, Macnab RM (1990) J Bacteriol 172: 1327–1339.PubMedGoogle Scholar
  38. Jones CJ, Macnab RM, Okino H, Aizawa SI (1990) J Mol Biol 212: 377–387.PubMedCrossRefGoogle Scholar
  39. Khan S (1990) Bacteria 12: 301–343.Google Scholar
  40. Khan S, Dapice M, Reese TS (1988) J Mol Biol 202: 575–584.PubMedCrossRefGoogle Scholar
  41. Khan S, Khan IH, Reese TS (1991) J Bacteriol 173: 2888–2896.PubMedGoogle Scholar
  42. Khan IH, Reese TS, Khan S (1992) Proc Natl Acad Sci USA 89: 5956–5960.PubMedCrossRefGoogle Scholar
  43. Kihara M, Homma M, Kutsukake K, Macnab RM (1989) J Bacteriol 171: 3247–3257.PubMedGoogle Scholar
  44. Komeda Y, Kutsukake K, lino T (1980) Genetics 94: 277–290.PubMedGoogle Scholar
  45. Kubori T, Shimamoto N, Yamaguchi S, Namba K, Aizawa SI (1992) J Mol Biol 226: 433–446.PubMedCrossRefGoogle Scholar
  46. Kutsukake K, Ohya Y, lino T (1990) J Bacteriol 172: 741–747.PubMedGoogle Scholar
  47. Kutsukake K, Ohya Y, Yamaguchi S, lino T (1988) Mol Gen Genet 214: 11–15.PubMedCrossRefGoogle Scholar
  48. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Cauldwell DE (1991) J Bacteriol 173: 6558–6567.PubMedGoogle Scholar
  49. Macnab RM (1987) In: Neidhardt FC, Ingraham J, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Am Soc Microbiol, Washington DC, 1: 732–759.Google Scholar
  50. Macnab RM (1990) Symp Soc Gen Microbiol 46: 77–106.Google Scholar
  51. Macnab RM (1992) Annu Rev Genet 26: 131–158.PubMedCrossRefGoogle Scholar
  52. Macnab RM, DeRosier DJ (1988) Can J Microbiol 34: 442–451.PubMedCrossRefGoogle Scholar
  53. Manson MD, Tedesco P, Berg HC, Harold FM, van der Drift C (1977) Proc Natl Acad Sci USA 74: 3060–3064.PubMedCrossRefGoogle Scholar
  54. Marshall KC (1988) Can J Microbiol 34: 503–506.CrossRefGoogle Scholar
  55. Marshall KC (1992) ASM News 58: 202–208.Google Scholar
  56. Marshall KC, Stout R, Mitchell R (1971) Can J Microbiol 17: 1413–1416.PubMedCrossRefGoogle Scholar
  57. Müller V, Jones CJ, Kawagishi I, Aizawa SI, Macnab RM (1992) J Bacteriol 174: 2298–2304.PubMedGoogle Scholar
  58. Namba K, Yamashita I, Vonderviszt F (1989) Annu Rev Microbiol 44: 689–719.Google Scholar
  59. Nelson CH, Robinson JA, Characklis WG (1985) Biotech Bioengin 27: 1662–1667.CrossRefGoogle Scholar
  60. Nishimura A, Hirota Y (1989) Mol Gen Genet 216: 340–346.PubMedCrossRefGoogle Scholar
  61. Ohnishi K, Kutsukake K, Suzuki H, Iino T (1990) Mol Gen Genet 216: 139–147.Google Scholar
  62. Richard FC, Bourg ACM (1991) Water Res 25: 807–816.CrossRefGoogle Scholar
  63. Roszak DB, Colwell RR (1987) Microbiol Rev 51: 365–379.PubMedGoogle Scholar
  64. Siebel MA, Characklis WG (1990) Biotech Bioengin 37: 778–789.CrossRefGoogle Scholar
  65. Silverman MR, Simon MI (1972) J Bacteriol 112: 986–993.PubMedGoogle Scholar
  66. Silverman MR, Simon MI (1973) J Bacteriol 113: 105–113.PubMedGoogle Scholar
  67. Silverman M, Simon MI (1974) Nature 249: 73–74.PubMedCrossRefGoogle Scholar
  68. Stewart RC, Dahlquist FW (1987) Chem Rev 87: 997–1025.CrossRefGoogle Scholar
  69. Stock JB, Lukat GS, Stock AM (1991) Annu Rev Biophys Biophys Chem 20: 109–136.PubMedCrossRefGoogle Scholar
  70. Sutton NA, Hughes N, Handley PS (1994) J Appl Bacteriol 76: 448–454.PubMedCrossRefGoogle Scholar
  71. Suzuki T, Komeda Y (1981) J Bacteriol 145: 1036–1041.PubMedGoogle Scholar
  72. Trachtenberg S, DeRosier DJ (1987) J Mol Biol 195: 581–601.PubMedCrossRefGoogle Scholar
  73. Van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987) Appl Environ Microbiol 53: 1898–1901.PubMedGoogle Scholar
  74. Volger AP, Homma M, Irikura VM, Macnab RM (1991) J Bacteriol 173: 3564–3572.Google Scholar
  75. Wardell JN, Brown CM, Ellwood DC (1980) In: Berkeley RCW (ed) Microbial adhesion to surfaces. Ellis Horwood, Chichester pp 221–230.Google Scholar
  76. Wickner W, Driessen AJM, Hartl FU (1991) Annu Rev Biochem 60: 101–124.PubMedCrossRefGoogle Scholar
  77. Winkler J (1994) Immuncytochemische Charakterisierung von Pseudomonaden und Lokalisierung der Brenzkatechin 2,3-Dioxygenase in Pseudomonas putida (pWWO) sowie Untersuchungen zum TOL-Plasmid-Transfer zwischen Pseudomonas putida (pWWO) und Pseudomonas fluorescens 55 in binären Biofilmen. Doct Thesis, University of Göttingen, Germany.Google Scholar
  78. Worsey MJ, Williams PA (1975) J Bacteriol 124: 7–13.PubMedGoogle Scholar
  79. Yamaguchi S, Fujita H, Ishihara A, Aizawa SI, Macnab RM (1986) J Bacterid 166: 187–193Google Scholar
  80. Zvyagintsev DG, Guzev VS, Guzeva IS (1977) Microbiologiya 46: 245–249.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Frank Mayer
    • 1
  • Michael Hoppert
    • 1
  1. 1.Institut für MikrobiologieGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations