Salt Resistance in Herbaceous Halophytes and Mangroves

  • Marianne Popp
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 56)


One of the now widely used definitions of halophytes is that of Jennings (1976), describing them as “the native flora of saline habitats”. This is very close to the description by Warming (1909 English Edition, 1895 Plantesamfund Danish Edition), who coined this and a larger number of still commonly used terms like hydro-, meso-, and xerophytes. According to Warming (1909), “a certain amount of soluble salts must be present before halophytic vegetation is called into existence; but the nature of the salts seems to be a matter of indifference”. Following Munns et al. (1983), such a habitat is one “containing saline water with an osmotic pressure (π) of more than 3.3 bar” (equivalent to 70 mM monovalent salts).


Salt Tolerance Plant Cell Environ Glycine Betaine Mangrove Species Salt Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad I, Wainwright SJ (1977) New Phytol 79: 605–612.CrossRefGoogle Scholar
  2. Albert R (1982) In: Kinzel H (ed): Pflanzenôkologie und Mineralstoñwechsel. Ulmer, Stuttgart.Google Scholar
  3. Biebl R, Kinzel H (1965) Òsterr Bot Z 112:56–93.CrossRefGoogle Scholar
  4. Blits KC, Gallagher JL (1990) Plant Cell Environ 13: 419–425.CrossRefGoogle Scholar
  5. Bradley PM, Morris JT (1991) J Exp Bot 42: 1525–1532.CrossRefGoogle Scholar
  6. Breckle SW, Freitas H, Reimann C (1990) Plant Cell Environ 13: 871–873.CrossRefGoogle Scholar
  7. Cheeseman JM (1988) Plant Physiol 87: 547–550.PubMedCrossRefGoogle Scholar
  8. Clough BF, Andrews TJ, Cowan IR (1982) In: Clough BF, Mangrove ecosystems in Australia. Structure, function and management. Australian National University Press, Canberra.Google Scholar
  9. Drennan PM, Beijak P, Pammenter NW (1992) S Afr J Bot 58: 486–490.Google Scholar
  10. Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Rev Biol 61: 313–337.CrossRefGoogle Scholar
  11. Flowers TJ, Flowers SA, Hajibagheri MA, Yeo AR (1990) New Phytol 114: 675–684.CrossRefGoogle Scholar
  12. Freitas H, Breckle SW (1992) Flora 187: 283–297.Google Scholar
  13. Glenn EP, Watson MC, O’Leary JW, Axelson RD (1992) Plant Cell Environ 15: 711–718.CrossRefGoogle Scholar
  14. Gorham J (1987) Plant Cell Environ 10: 191–196.Google Scholar
  15. Hassidim M, Braun Y, Lerner HR, Reinhold L (1990) Plant Physiol 94: 1795–1801.PubMedCrossRefGoogle Scholar
  16. Hedrich R, Schröder IJ (1989) Annu Rev Plant Physiol 40: 519–569.Google Scholar
  17. Ish-Shalom-Gordon N, Dubinsky Z (1993) Pac Sei 47: 51–58.Google Scholar
  18. Jennings DH (1976) Biol Rev 51: 453–486.CrossRefGoogle Scholar
  19. Jones HG (1983) Plants and microclimate. Cambridge University Press, Cambridge.Google Scholar
  20. Koyro HW, Stelzer R, Huchzermeyer B (1993) Bot Acta 106: 110–119.Google Scholar
  21. Larcher W (1983) Physiological plant ecology. Springer, Berlin Heidelberg New York.Google Scholar
  22. Leach RP, Wheealer KP, Flowers TJ, Yeo AR (1990) J Exp Bot 41: 1089–1094.CrossRefGoogle Scholar
  23. Levitt J (1980) Responses of plants to environmental stress. Academic Press, New York.Google Scholar
  24. Liphschitz N, Waisel Y (1982) In: Sen DW, Rajpurohit KS (eds) Contributions to the ecology of halophytes. W Junk, The Hague.Google Scholar
  25. Lüttge U (1993) R Bras Fisiol Veg 5: 217–224.Google Scholar
  26. Maathuis FJM, Prins HBA (1990) Plant Physiol 92: 23–28.PubMedCrossRefGoogle Scholar
  27. Maathuis FJM, Flowers TJ, Yeo AR (1992) J Exp Bot 43: 1219–1223.CrossRefGoogle Scholar
  28. Marcum KB, Murdoch CL (1990) Ann Bot 66: 1–7.Google Scholar
  29. Marcum KB, Murdoch CL (1992) New Phytol 120: 281–288.CrossRefGoogle Scholar
  30. Martinez U, Läuchli A (1993) Planta 190: 519–524.CrossRefGoogle Scholar
  31. Mennen H, Jacoby B, Marschner H (1990) J Plant Physiol 137: 180–183.Google Scholar
  32. Morris C (1992) Academic Press dictionary of science and technology. Academic Press, San Diego.Google Scholar
  33. Munns R (1993) Plant Cell Environ 16: 15–24.CrossRefGoogle Scholar
  34. Munns R, Greenway H, Kirst Go (1983) In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology III. Encyclopedia of plant physiology NS. Springer, Berlin Heidelberg New York.Google Scholar
  35. Osmond CB (1980) In: Osmond CB, Bjorkman O, Anderson DJ (eds) Physiological processes in plant ecology. Towards a synthesis with Atriplex. Ecological Studies 36. Springer, Berlin Heidelberg New York.Google Scholar
  36. Paul MJ, Cockburn W (1989) J Exp Bot 40: 1093–1098.CrossRefGoogle Scholar
  37. Polania J (1990) Anatomische und physiologische Anpassungen von Mangroven. PhD Thesis, University Vienna.Google Scholar
  38. Popp M, Polania J (1989) Ann Sei For 46: 842s–844s.CrossRefGoogle Scholar
  39. Popp M, Feldl C, Polania J, Aswathappa N (1990) In: Werner D, Müller P (eds) Fast growing trees and nitrogen fixing trees. Fischer, Stuttgart.Google Scholar
  40. Popp M, Polania J, Weiper M (1993) In: Lieth H, Al Masoom A, Towards the rational use of high salinity tolerant plants, vol I. Kluwer, Dordrecht.Google Scholar
  41. Rada F, Goldstein G, Orozco A, Montilla M, Zabala O, Azocar A (1989) Aust J Plant Physiol 16: 477–486.CrossRefGoogle Scholar
  42. Reimann C (1992) J Exp Bot 43: 503–510.CrossRefGoogle Scholar
  43. Reimann C, Breckle SW (1993) Plant Cell Environ 16: 323–328.CrossRefGoogle Scholar
  44. Rengel Z (1992) Plant Cell Environ 15: 625–632.CrossRefGoogle Scholar
  45. Rozema J (1976) Flora 165: 197–209.Google Scholar
  46. Rozema J, Buys E, Otte ML, Broekman RA, Ernst WHO (1991) Z Pflanzenernaehr Bodenkd 154: 307–313.CrossRefGoogle Scholar
  47. Schachtman DP, Munns R, Whitecross MI (1991a) Crop Sei 31: 992–997.CrossRefGoogle Scholar
  48. Schachtman DP, Tyerman SD, Terry BR (1991b) Plant Physiol 97: 598–605.PubMedCrossRefGoogle Scholar
  49. Shachar-Hill B (1990) Proc R Soc Lond B 241: 159–163.CrossRefGoogle Scholar
  50. Shennan C, Hunt R, Macrobbie EAC (1987) Plant Cell Environ 10: 59–65.CrossRefGoogle Scholar
  51. Spickett CM, Smirnoff N, Ratcliffe RG (1993) Plant Physiol 102: 629–638.PubMedGoogle Scholar
  52. Staal M, Maathuis FJM, Elzenga JTM, Overbeek IHM, Prins HB A (1991) Physiol Plant 82: 179–184.CrossRefGoogle Scholar
  53. Stewart GR, Ahmad I (1983) In: Robbs DA, Pierpoint WS, Metals and micronutrients. Academic Press, London.Google Scholar
  54. Taleisnik EL (1989) Ann Bot 63: 221–228.Google Scholar
  55. Tarczynski MC, Jensen RG, Bohnert HJ (1993) Science 259: 508–510.PubMedCrossRefGoogle Scholar
  56. Thomas JC, McElwain EF, Bohnert HJ (1992) Plant Physiol 100: 416–423.PubMedCrossRefGoogle Scholar
  57. Thomson WW, Faraday CD, Oross JW (1988) In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissue. Longman, New York.Google Scholar
  58. Ungar IA (1991) Ecophysiology of vascular halophytes. CRC Press, Boca Raton.Google Scholar
  59. Vernon DM, Ostrem JA, Bohnert HJ (1993) Plant Cell Environ 16: 437–444.CrossRefGoogle Scholar
  60. Waisel Y (1991) Physiol Plant 83: 506–510.CrossRefGoogle Scholar
  61. Walter H, Steiner M (1936) Z Bot 30: 65–193.Google Scholar
  62. Wang XY, Suhayda CG, Redmann RE (1992) Can J Bot 70: 1123–1130.CrossRefGoogle Scholar
  63. Warming E (1909) Oecology of plants. Clarendon Press, Oxford.Google Scholar
  64. Warwick NWM, Halloran GM (1991) New Phytol 119: 161–168.CrossRefGoogle Scholar
  65. Werner A, Stelzer R (1990) Plant Cell Environ 13: 243–255.CrossRefGoogle Scholar
  66. Winter E (1982) Aust J Plant Physiol 9: 227–237.CrossRefGoogle Scholar
  67. Yeo AR (1983) Physiol Plant 58: 214–222.CrossRefGoogle Scholar
  68. Youngman AL, Heckathorn SA (1992) Funct Ecol 6: 686–692.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Marianne Popp
    • 1
  1. 1.Institut f.Angewandte BotanikUniversität MünsterMünsterGermany

Personalised recommendations