Advertisement

Replication: The Role of Escherichia coli Heat Shock Proteins in DNA Replication

  • Ellen L. Zechner
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 56)

Abstract

Our understanding of how bacterial cells replicate their DNA originates from intensive studies of the modes of DNA replication used by bacteriophages and plasmids. The patterns of DNA replication and their control observed in bacteria have in turn been used as models to guide the investigation of DNA synthesis in more complex eukaryotic systems. What has emerged over the years is a remarkably detailed picture; one, however, that is by no means complete. The study of DNA replication continues to receive significant attention. Studies devoted to the relatively simple bacteriophage and plasmid models continue to provide new insights that are relevant to our understanding of prokaryotes and eukaryotes alike. The topic of this chapter is an example of such a recent contribution. Members of a large group of proteins, common to prokaryotes and eukaryotes, called molecular chaperones, have been found to interact with replication proteins important to bacteriophage and plasmids such that the replication activity is regulated. The specifics of those interactions will be described, as well as the relevance of this finding to the broader theme of cellular DNA replication.

Keywords

Heat Shock Protein Molecular Chaperone Heat Shock Response Heat Shock Gene Plasmid Replication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles A, Snyder K, Chattoraj D (1984) J Mol Biol 173: 307–324.PubMedCrossRefGoogle Scholar
  2. Alfano C, McMacken R (1989a) J Biol Chem 264: 10699–10708.PubMedGoogle Scholar
  3. Alfano C, McMacken R (1989b) J Biol Chem 264: 10709–10718.PubMedGoogle Scholar
  4. Austin S, Mural R, Chattoraj D et al. (1985) J Mol Biol 183: 195–202.PubMedCrossRefGoogle Scholar
  5. Baker T, Sekimizu K, Funnell B et al. (1986) Cell 45: 53–64.PubMedCrossRefGoogle Scholar
  6. Banecki B, Zylicz M, Bertoli E et al. (1992) J Biol Chem 267: 25051–25058.PubMedGoogle Scholar
  7. Bramhill D, Kornberg A (1988a) Cell 52: 743–755.PubMedCrossRefGoogle Scholar
  8. Bramhill D, Kornberg A (1988b) Cell 54: 915–918.PubMedCrossRefGoogle Scholar
  9. Bukau B, Walker G (1989) J Bacteriol 171: 6030–6038.PubMedGoogle Scholar
  10. Chattoraj D, Cordes K, Abeles A (1984) Proc Natl Acad Sci USA 81: 6456–6460.PubMedCrossRefGoogle Scholar
  11. Chattoraj D, Mason R, Wickner S (1988) Cell 52: 551–557.PubMedCrossRefGoogle Scholar
  12. DasGupta S, Mukhopadhyay G, Papp P et al. (1993) J Mol Biol 232: 23–34.PubMedCrossRefGoogle Scholar
  13. Dodson M, Roberts J, McMacken R et al. (1985) Proc Natl Acad Sci USA 82: 4678–4682.PubMedCrossRefGoogle Scholar
  14. Dodson M, Echols H, Wickner S et al. (1986) Proc Natl Acad Sci USA 83: 7638–7642.PubMedCrossRefGoogle Scholar
  15. Dodson M, McMacken R, Echols H (1989) J Biol Chem 264: 10719–10725.PubMedGoogle Scholar
  16. Echols H (1990) J Biol Chem 265: 14697–14700.PubMedGoogle Scholar
  17. Ellis RJ, van der Vies S (1991) Annu Rev Biochem 60: 321–347.PubMedCrossRefGoogle Scholar
  18. Ezaki B, Ogura T, Mori H et al. (1989) Mol Gen Genet 218: 183–189.PubMedCrossRefGoogle Scholar
  19. Fuller R, Kornberg A (1983) Proc Natl Acad Sci USA 80: 5817–5821.PubMedCrossRefGoogle Scholar
  20. Fuller R, Funnell B, Kornberg A (1984) Cell 38: 889–900.PubMedCrossRefGoogle Scholar
  21. Funnell B, Baker T, Kornberg A (1986) J Biol Chem 261: 5616–5624.PubMedGoogle Scholar
  22. Funnell B, Baker T, Kornberg A (1987) J Biol Chem 262: 10327–10334.PubMedGoogle Scholar
  23. Georgopoulos C, Ang D, Liberek K et al. (1990) In: Morimoto R, Tissieres A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor, New York, pp 191–221.Google Scholar
  24. Gething M, Sambrook J (1992) Nature 355: 33–45.PubMedCrossRefGoogle Scholar
  25. Gross C, Straus D, Erickson J et al. (1990) In: Morimoto R, Tissieres A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor, New York, pp 167–189.Google Scholar
  26. Hansen E, Yarmolinsky M (1986) Proc Natl Acad Sci USA 83: 4423–4427.PubMedCrossRefGoogle Scholar
  27. Hupp T, Kaguni J (1993a) J Biol Chem 268: 13128–13136.PubMedGoogle Scholar
  28. Hupp T, Kaguni J (1993b) J Biol Chem 268: 13137–13142.PubMedGoogle Scholar
  29. Hupp T, Kaguni J (1993c) J Biol Chem 268: 13143–13150.PubMedGoogle Scholar
  30. Hwang D, Kaguni J (1991) J Biol Chem 266: 7537–7541.PubMedGoogle Scholar
  31. Hwang D, Kornberg A (1990) Cell 63: 325–331.PubMedCrossRefGoogle Scholar
  32. Hwang D, Crooke E, Kornberg A (1990) J Biol Chem 265: 19244–19248.PubMedGoogle Scholar
  33. Ishiai M, Wada C, Kawasaki Y et al. (1992) J Bacteriol 174: 5597–5603.PubMedGoogle Scholar
  34. Kawasaki Y, Wada C, Yura T (1990) Mol Gen Genet 220: 277–282.PubMedCrossRefGoogle Scholar
  35. Kawasaki Y, Wada C, Yura T (1991) J Bacteriol 173: 1064–1072.PubMedGoogle Scholar
  36. Kawasaki Y, Wada C, Yura T (1992) J Biol Chem 267: 11520–11524.PubMedGoogle Scholar
  37. Kitteil B, Helinski D (1991) Proc Natl Acad Sci USA 88: 1389–1393.CrossRefGoogle Scholar
  38. Kline B (1985) Plasmid 14: 1–16.PubMedCrossRefGoogle Scholar
  39. Kornberg A, Baker T (1992) In: DNA replication, 2nd edn. Freeman, New York, 931 pp.Google Scholar
  40. Liberek K, Georgopoulos C, Zylicz M (1988) Proc Natl Acad Sci USA 85: 6632–6636.PubMedCrossRefGoogle Scholar
  41. Liberek K, Marszalek J, Ang D et al. (1991a) Proc Natl Acad Sci USA 88: 2874–2878.PubMedCrossRefGoogle Scholar
  42. Liberek K, Skowyra D, Zylicz M et al. (1991b) J Biol Chem 266: 14491–14496.PubMedGoogle Scholar
  43. Lindquist S, Craig E (1988) Annu Rev Genet 22: 631–677.PubMedCrossRefGoogle Scholar
  44. Mallory J, Alfano C, McMacken R (1990) J Biol Chem 265: 13297–13307.PubMedGoogle Scholar
  45. Marians KJ (1992) Annu Rev Biochem 61: 673–719.PubMedCrossRefGoogle Scholar
  46. McEachern M, Bott M, Tooker P et al. (1986) Proc Natl Acad Sci USA 86: 7942–7946.CrossRefGoogle Scholar
  47. McMacken R, Alfano C, Gomes B et al. (1987) In: McMacken R, Kelly T (eds) Mechanisms of DNA replication and recombination, UCLA Symp Mol Cell Biol Ser, vol 47. Alan R Liss, New York, pp 227–246.Google Scholar
  48. McMacken R, Mensa-Wilmot K, Alfano C et al. (1988) In: Kelly T, Stillman B (eds) Cancer cells, vol 6. Cold Spring Harbor, New York, pp 25–34.Google Scholar
  49. Mensa-Wilmot K, Seaby R, Alfano C et al. (1989) J Biol Chem 264: 2853–2861.PubMedGoogle Scholar
  50. Morimoto R, Tissieres A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor, New York, 450 pp.Google Scholar
  51. Murakami Y, Ohmori H, Yura T et al. (1987) J Bacteriol 169: 1724–1730.PubMedGoogle Scholar
  52. Murotsu T, Matsubara K, Sugisaki H et al. (1981) Gene 15: 257–271.PubMedCrossRefGoogle Scholar
  53. Neidhardt F, VanBogelen R (1987) In: Neidhardt F (ed) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Am Soc Microbiol, Washington, DC, pp 1334–1345.Google Scholar
  54. Nordström K (1990) Cell 63: 1121–1124.PubMedCrossRefGoogle Scholar
  55. Ogawa T, Baker T, van der Ende A et al. (1985) Proc Natl Acad Sci USA 82: 3562–3566.PubMedCrossRefGoogle Scholar
  56. Ohki M, Smith C (1989) Nucleic Acids Res 17: 3479–3490.PubMedCrossRefGoogle Scholar
  57. Osipiuk J, Georgopoulos C, Zylicz M (1993) J Biol Chem 268: 4821–4827.PubMedGoogle Scholar
  58. Pal S, Chattoraj D (1988) J Bacteriol 170: 3554–3560.PubMedGoogle Scholar
  59. Pelham H (1986) Cell 46: 959–961.PubMedCrossRefGoogle Scholar
  60. Prentki P, Chandler M, Caro L (1977) Mol Gen Genet 152: 71–76.PubMedCrossRefGoogle Scholar
  61. Rothman JE (1989) Cell 59: 591–601.PubMedCrossRefGoogle Scholar
  62. Sakakibara Y (1988) J Bacteriol 170: 972–979.PubMedGoogle Scholar
  63. Schnos M, Zahn K, Inman R et al. (1988) Cell 52: 385–395.PubMedCrossRefGoogle Scholar
  64. Scott J, Vapnek D (1980) In: Alberts B (ed) ICN-UCLA symposium on mechanistic studies of DNA replication and genetic recombination. Academic Press, New York, pp 335–345.Google Scholar
  65. Sekimizu K, Bramhill D, Kornberg A (1987) Cell 50: 259–265.PubMedCrossRefGoogle Scholar
  66. Sekimizu K, Bramhill D, Kornberg A (1988) J Biol Chem 263: 7124–7130.PubMedGoogle Scholar
  67. Skarstad K, Thöny B, Hwang D et al. (1993) J Biol Chem 268: 5365–5370.PubMedGoogle Scholar
  68. Skowyra D, Wickner S (1993) J Biol Chem 268: 25296–25301.PubMedGoogle Scholar
  69. Skowyra D, Georgopoulos C, Zylicz M (1990) Cell 62: 939–944.PubMedCrossRefGoogle Scholar
  70. Sozhamannan S, Chattoraj D (1993) J Bacteriol 175: 3546–3555.PubMedGoogle Scholar
  71. Sternberg N, Austin S (1981) Plasmid 5: 20–31.PubMedCrossRefGoogle Scholar
  72. Sternberg N, Austin S (1983) J Bacteriol 153: 800–812.PubMedGoogle Scholar
  73. Swack J, Pal S, Mason R et al. (1987) J Bacteriol 169: 3737–3742.PubMedGoogle Scholar
  74. Tilly K, Yarmolinsky M (1989) J Bacteriol 171: 6025–6029.PubMedGoogle Scholar
  75. Tilly K, Sozhamannan S, Yarmolinsky M (1990) New Biol 2: 812–817.PubMedGoogle Scholar
  76. Timmis K, Cabello F, Cohen S (1975) Proc Natl Acad Sci USA 72: 2242–2246.PubMedCrossRefGoogle Scholar
  77. Trawick J, Kline B (1985) Plasmid 13: 59–69.PubMedCrossRefGoogle Scholar
  78. Tsurimoto T, Matsubara K (1981) Nucleic Acids Res 9: 1789–1799.PubMedCrossRefGoogle Scholar
  79. van der Ende A, Baker T, Ogawa T et al. (1985) Proc Natl Acad Sci USA 82: 3954–3958.PubMedCrossRefGoogle Scholar
  80. Wada C, Akiyama Y, Ito K et al. (1986) Mol Gen Genet 203: 208–213.PubMedCrossRefGoogle Scholar
  81. Wada C, Imai M, Yura T (1987) Proc Natl Acad Sci USA 84: 8849–8853.PubMedCrossRefGoogle Scholar
  82. Wickner S (1990) Proc Natl Acad Sci USA 87: 2690–2694.PubMedCrossRefGoogle Scholar
  83. Wickner S, Chattoraj D (1987) Proc Natl Acad Sci USA 84: 3668–3672.PubMedCrossRefGoogle Scholar
  84. Wickner S, Hurwitz J (1975) Proc Natl Acad Sci USA 72: 921–925.PubMedCrossRefGoogle Scholar
  85. Wickner S, Hoskins J, McKenney K (1991a) Nature 350: 165–167.PubMedCrossRefGoogle Scholar
  86. Wickner S, Hoskins J, McKenney K (1991b) Proc Natl Acad Sci USA 88: 7903–7907.PubMedCrossRefGoogle Scholar
  87. Wickner S, Skowyra D, Hoskins J et al. (1992) Proc Natl Acad Sci USA 89: 10345–10349.PubMedCrossRefGoogle Scholar
  88. Womble D, Rownd R (1987) J Mol Biol 195: 99–113.PubMedCrossRefGoogle Scholar
  89. Yamamoto T, Mclntyre J, Sell S et al. (1987) J Biol Chem 262: 7996–7999.PubMedGoogle Scholar
  90. Zylicz M (1993) Philos Trans R Soc Lond Biol 339: 271–278.PubMedCrossRefGoogle Scholar
  91. Zylicz M, Ang D, Liberek K et al. (1988) Biochem Biophys Acta 951: 344–350.PubMedGoogle Scholar
  92. Zylicz M, Ang D, Liberek K et al. (1989) EMBO J 8: 1601–1608.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Ellen L. Zechner
    • 1
  1. 1.Institut für MikrobiologieKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations