Advertisement

Movement of Pulvinated Leaves

  • W.-E. Mayer
  • R. Hampp
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 56)

Abstract

Leaf movements of many plant species are mediated by curvatures of pulvini, located at the base of petioles and laminae. In pulvini, the central vascular core is surrounded by parenchymous cortex cells. The curvatures of pulvini are brought about by the coordinated and simultaneous swelling and shrinking of the cortex cells (the motor cells) in two opposing halves of the pulvinus. Motor cells that are expanded axially in the horizontal day (open, unfolded) position of leaves or leaflets are designated extensor cells, those that are contracted axially in the respective position flexor cells. Depending on whether the leaves (pulvini) move to their vertical night position (closed, folded position) downwards (e.g., secondary pulvini of Phaseolus and Samanea), or upwards (e.g., secondary pulvini of Cassia), the extensor cells are located in the lower (abaxial) or upper (adaxial) half of the pulvinus.

Keywords

Circadian Clock Bundle Sheath Leaf Movement Motor Cell Motor Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antkowiak B (1992) PhD Thesis. University of Tübingen, Tübingen. Antkowiak B, En-gelmann W (1989) J Interdiscip Cycle Res 20: 164–165.Google Scholar
  2. Antkowiak B, Mayer W-E, En–gelmann W (1991) J Exp Bot 42: 901–910.Google Scholar
  3. Antkowiak B, Engelmann W, Herbjørnsen R, Johnsson A (1992) Physiol Plant 86: 551–558.Google Scholar
  4. Bialczyk J, Lechowski Z (1986) Plant Cell Physiol 27: 981–987.Google Scholar
  5. Bialczyk J, Lechowski Z (1987) New Phytol 105: 469–475.Google Scholar
  6. Bialczyk J, Lechowski Z (1989) Biochem Physiol Pflanz 184: 79–86.Google Scholar
  7. Bialczyk J, Lechowski Z (1990a) Plant Physiol Biochem 28: 315–320.Google Scholar
  8. Bialczyk J, Lechowski Z (1990b) New Phytol 115: 595–601.Google Scholar
  9. Bialczyk J, Lechowski Z (1992) Acta Soc Bot Pol 61: 241–252.Google Scholar
  10. Bloom AJ, Chapin FS III, Mooney HA (1985) Annu Rev Ecol Syst 16: 363–392.Google Scholar
  11. Bollig I, Mayer K, Mayer W-E, Engelmann W (1978) Planta 141: 225–230.Google Scholar
  12. Bourbouloux A, Roblin G, Fleurat-Lessard P (1992) J Exp Bot 43: 63–71.Google Scholar
  13. Bönning E (1973) The physiological clock. Circadian rhythms and biological chronometry. Springer, Berlin Heidelberg New York.Google Scholar
  14. Coté GG, DePass AL, Quarmby LM, Tate BF, Morse MJ, Satter RL, Crain RC (1989) Plant Physiol 90: 1422–1428.PubMedGoogle Scholar
  15. Coté GG, Crain RC (1993) Annu Rev Plant Physiol Plant Mol Biol 44: 333–356.Google Scholar
  16. Crain RC (1990) In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. Vol 3. American Society of Plant Physiologists, Bethesda, pp 175–188.Google Scholar
  17. Degli Agosti R, Naidet C, Millet B (1990) Botanica Helvetica 100: 249–256.Google Scholar
  18. Edmunds LN Jr (1988) Cellular and molecular bases of biological clocks: models and mechanisms for circadian timekeeping. Springer, Berlin Heidelberg New York.Google Scholar
  19. Ellingsrud S, Johnsson A (1993) Bioelectromagnetics 14: 257–271.PubMedGoogle Scholar
  20. Engelmann W, Schrempf M (1980) Photochem Photobiol Rev 5: 49–86.Google Scholar
  21. Erath F, Rüge WA, Mayer W-E, Hampp R (1988) Planta 173: 447–452.Google Scholar
  22. Everat-Bourbouloux A, Fleurat-Lessard P, Roblin G (1990) J Exp Bot 224: 315–324.Google Scholar
  23. Fleurat-Lessard P, Bonmort J, Roblin G (1988) Plant Physiol (Suppl) 86: 147.Google Scholar
  24. Freudling C, Mayer W-E, Gradmann D (1980) Plant Physiol 65: 966–968.PubMedGoogle Scholar
  25. Freudling C, Starrach N, Flach D, Gradmann D, Mayer W-E (1988) Planta 175: 193–203.Google Scholar
  26. Fromm J (1991) Physiol Plant 83: 529–533.Google Scholar
  27. Fromm J, Eschrich W (1988) Trees 2: 18–24.Google Scholar
  28. Fromm J, Eschrich W (1990) In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. Vol 3. American Society of Plant Physiologists, Bethesda, pp 25–43.Google Scholar
  29. Fu QA, Ehleringer JR (1989) Plant Physiol 91: 1162–1167.PubMedGoogle Scholar
  30. Giaquinta RT (1983) Annu Rev Plant Physiol 34: 347–387.Google Scholar
  31. Gorton HL (1990) In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. Vol 3. American Society of Plant Physiologists, Bethesda, pp 223–237.Google Scholar
  32. Guillaume FM, Koukkari WL (1987) In: Pauly JE, Scheving LE (eds) Advances in chronobiology, Part A. Alan R Liss, New York, pp 47–57.Google Scholar
  33. Hampp R, Outlaw WH Jr, Tarczynski MC (1982) Plant Physiol 70: 1582–1585.PubMedGoogle Scholar
  34. Hampp R, Outlaw WH Jr, Ziegler (1987) Z Naturforsch 42c: 1092–1096.Google Scholar
  35. Hampp R, Rieger A, Outlaw WH Jr (1990) In: Linskens HF, Jackson JF (eds) Physical methods in plant sciences. Springer, Berlin Heidelberg New York, pp 124–147.Google Scholar
  36. Hensel W (1987) Prog Bot 49: 171–180.Google Scholar
  37. Iglesias A, Satter RL (1983) Plant Physiol 72: 564–569.PubMedGoogle Scholar
  38. Huang RS, Smith WK, Yost RS (1985) New Phytol 99: 229–243.Google Scholar
  39. Johnsson A, Skrove D (1988) Plant Physiol Life Sci Adv 7: 1–5.Google Scholar
  40. Johnsson A, Engelmann W, Antkowiak B (1990) In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. Vol 3. American Society of Plant Physiologists, Bethesda, pp 79–100.Google Scholar
  41. Johnsson A, Bostrom A-C, Pedersen M (1993) J Interdiscip Cycle Res 24: 17–32.Google Scholar
  42. Kao WY, Forseth IN (1991) Plant Cell Environ 14: 287–293.Google Scholar
  43. Kao WY, Forseth IN (1993) Am J Bot 80: 886–891.Google Scholar
  44. Kearns EV, Assmann M (1993) Plant Physiol 102: 711–715.PubMedGoogle Scholar
  45. Kim HJ, Coté GG, Grain RC (1992) Plant Physiol 99: 1532–1539.PubMedGoogle Scholar
  46. Kim HJ, Coté GG, Crain RC (1993) Science 260: 960–962.PubMedGoogle Scholar
  47. Koller D (1986) Photochem Photobiol 44: 819–826.Google Scholar
  48. Koller D (1990) Plant Cell Environ 13: 615–632.Google Scholar
  49. Lee Y (1990) In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. Vol 3. American Society of Plant Physiologists, Bethesda, pp 130–141.Google Scholar
  50. Lee Y, Satter RL (1987) Plant Physiol 83: 856–862.PubMedGoogle Scholar
  51. Lee Y, Satter RL (1989) Planta 178: 31–40.Google Scholar
  52. Löwen CZ, Satter RL (1989) Planta 179: 421–427.Google Scholar
  53. Mayer W-E (1981) Planta 152: 292–301.Google Scholar
  54. Mayer W-E (1990) In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. Vol 3. American Society of Plant Physiologists, Bethesda, pp 160–174.Google Scholar
  55. Mayer W-E, Fischer C (1994) Chronobiol Int 11: 156–164.PubMedGoogle Scholar
  56. Mayer W-E, Scherer I (1975) Z Naturforsch 30c: 855–856.Google Scholar
  57. Mayer W-E, Gruner R, Strubel H (1975) Planta 125: 141–148.Google Scholar
  58. Mayer W-E, Rüge WA, Starrach N, Hampp R (1987) Z Naturforsch 42c: 553–558.Google Scholar
  59. Mayer W-E, Betz S, Schöffel S 260 (1994) Biological Rhythm Res 25: 301–314.Google Scholar
  60. Millet B, Botton A-M, Hayoum C, Koukkari WL (1988) Chronobiol Int 5: 187–193.PubMedGoogle Scholar
  61. Minchin PEH, Thorpe MR (1987) J Exp Bot 38: 211–220.Google Scholar
  62. Moran N (1990) In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. Vol 3. American Society of Plant Physiologists, Bethesda, pp 142–159.Google Scholar
  63. Moran N (1991) Biophys J 59: 456a.Google Scholar
  64. Moran N (1993) Biophys J 64: 387a.Google Scholar
  65. Moran N, Satter RL (1989) In: Dainty J et al. (eds) Plant Membrane Transport. Elsevier, Amsterdam.Google Scholar
  66. Moran N, Ehrenstein G, Iwasa K, Mischke C, Bare C, Satter RL (1988) Plant Physiol 88: 643–648.PubMedGoogle Scholar
  67. Moran N, Fox D, Satter RL (1990) Plant Physiol 94: 424–431.PubMedGoogle Scholar
  68. Morse MJ, Crain RC, Satter RL (1987a) Plant Physiol 83: 640–644.PubMedGoogle Scholar
  69. Morse MJ, Crain RC, Satter RL (1987b) Proc Natl Acad Sci USA 84: 7075–7078.PubMedGoogle Scholar
  70. Morse MJ, Crain RC, Coté GG, Satter RL (1989a) Plant Physiol 89: 724–729.PubMedGoogle Scholar
  71. Morse MJ, Satter RL, Crain RC, Coté GG (1989b) Physiol Plant 76: 118–121.Google Scholar
  72. Morse MJ, Grain RC, Coté GG, Satter RL (1990) In: Morré DJ, Boss WF, Loewus F (eds) Plant inositide metabolism. Alan R Liss, New York, pp 201–215.Google Scholar
  73. Moysset L, Simon E (1989) Plant Physiol 90: 1108–1114.PubMedGoogle Scholar
  74. Moysset L, Simon E (1990) Plant Cell Physiol 31: 187–193.Google Scholar
  75. Nishizaki Y (1986) Plant Cell Physiol 27: 155–162.Google Scholar
  76. Nishizaki Y (1987) Plant Cell Physiol 28: 1163–1166.Google Scholar
  77. Nishizaki Y (1988) Plant Cell Physiol 29: 1041–1046.Google Scholar
  78. Nishizaki Y (1989) In: Tazawa M et al. (eds) Plant water relations and growth under stress Yamada Science Foundation, Tokyo, pp 425–427.Google Scholar
  79. Nishizaki Y (1990) Plant Cell Physiol 31: 591–596.Google Scholar
  80. Nishizaki Y (1992) Plant Cell Physiol 33: 1073–1078.Google Scholar
  81. Ogren E (1988) Photosynth Res 18: 263–275.Google Scholar
  82. Outlaw WH Jr (1989) Physiol Plant 77: 275–281.Google Scholar
  83. Perdersen M (1994) Physiol Plant (in press).Google Scholar
  84. Pedersen M, Johnsson A, Herbjornsen R (1990) Z Naturforsch 45c: 859–862.Google Scholar
  85. Pedersen M, Eidesmo T, Johnsson A (1992) Physiol Plant 84: 514–520.Google Scholar
  86. Pedersen M, Johnsson A, Mähle J, Dallekken R (1993) Physiol Plant 89: 277–284.Google Scholar
  87. Pena-Valdivia CB, Ortega-Delgado ML (1991) J Sci Food Agrie 55: 563–578.Google Scholar
  88. Prichard JM, Forseth IN (1988) Am J Bot 75: 1201–1211.Google Scholar
  89. Racusen R, Galston AW (1977) Planta 135: 57–62.Google Scholar
  90. Racusen R, Satter RL (1975) Nature 255: 408–410.PubMedGoogle Scholar
  91. Rensing L, Hardeland R (1990) Chronobiol Int 7: 353–370.PubMedGoogle Scholar
  92. Rieger A, Hampp R (1991) Planta 184: 415–421Google Scholar
  93. Rieger A, Lutz A, Hampp R (1992) Planta 187: 95–102.Google Scholar
  94. Roblin G (1990) In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. Vol 3. American Society of Plant Physiologists, Bethesda, pp 44–58.Google Scholar
  95. Roblin G, Fleurat-Lessard P, Bonmort J (1989) Plant Physiol 90: 697–701.PubMedGoogle Scholar
  96. Roblin G, Fleurat-Lessard P, Everat-Bourbouloux A, Bonmort J, Moyen C (1990) Photochem Photobiol 52: 197–202.Google Scholar
  97. Roblin G, Fleurat-Lessard P, Bonmort J (1991) J Plant Physiol 139: 166–170.Google Scholar
  98. Saeedi S, Roblin G (1986) Plant Physiol 82: 270–273.PubMedGoogle Scholar
  99. Satter RL, Galston AW (1981) Annu Rev Plant Physiol 32: 83–110.Google Scholar
  100. Satter RL, Morse MJ (1990) In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. Vol 3. American Society of Plant Physiologists, Bethesda, pp 10–24.Google Scholar
  101. Satter RL, Applewhite PB, Chaudri J, Galston AW (1976) Photochem Photobiol 23: 107–112.PubMedGoogle Scholar
  102. Satter RL, Hatch AM, Gill MK (1979) Plant Physiol 64: 379–381.PubMedGoogle Scholar
  103. Satter RL, Xu Y, DePass A (1987) Plant Physiol 85: 850–855.PubMedGoogle Scholar
  104. Satter RL, Morse MJ, Lee Y, Crain RC, Coté GG, Moran N (1988) Bot Acta 101: 205–213.Google Scholar
  105. Satter RL, Gorton HL, Vogelmann TC (eds) (1990) The pulvinus: motor organ for leaf movement. Vol 3. American Society of Plant Physiologists, Bethesda.Google Scholar
  106. Scott BIH, Gulline HF, Robinson GR (1977) Aust J Plant Physiol 4: 193–206.Google Scholar
  107. Sibaoka T (1991) Bot Mag Tokyo 104: 73–95.Google Scholar
  108. Starrach N (1988) PhD Thesis. University of Tübingen, Tübingen. Starrach N, Mayer W-E (1986) J Plant Physiol 126: 213–222.Google Scholar
  109. Starrach N, Mayer W-E (1989) J Exp Bot 40: 865–873.Google Scholar
  110. Starrach N, Freudling C, Mayer W-E, Gradmann D (1984) Planta 160: 88–90.Google Scholar
  111. Starrach N, Flach D, Mayer W-E (1985) J Plant Physiol 120: 441–455.Google Scholar
  112. Vanhinsberg N, Horton RF (1990) Biochem Physiol Pflanz 186: 37–42.Google Scholar
  113. Wainwright CM (1977) Am J Bot 64: 1032–1041.Google Scholar
  114. Wardlaw IF (1990) New Phytol 116: 341–381.Google Scholar
  115. Weber U, Engelmann W, Mayer W-E (1992) Chronobiol Int 9: 269–277.PubMedGoogle Scholar
  116. Werker E, Shak T, Koller D (1991) Bot Acta 104: 144–156.Google Scholar
  117. Ziegler H (1975) In: Zimmermann MH, Milburn JA (eds) Encyclopaedia of Plant Physiology, vol 1. Springer, Berlin Heidelberg New York, pp 59–100.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • W.-E. Mayer
    • 1
  • R. Hampp
    • 1
  1. 1.Physiologische Ökologie der PflanzenUniversität TübingenTübingenGermany

Personalised recommendations