Advertisement

Standard Molecular Techniques for the Analysis of Transgenic Plants

  • J. Fütterer
  • A. Gisel
  • V. Iglesias
  • A. Klöti
  • B. Kost
  • O. Mittelsten Scheid
  • G. Neuhaus
  • G. Neuhaus-Url
  • M. Schrott
  • R. Shillito
  • G. Spangenberg
  • Z. Y. Wang
Chapter
Part of the Springer Lab Manual book series (SLM)

Abstract

In the following sections, a series of step-by-step protocols for standard molecular techniques widely used in the characterization of transgenic plants and in gene expression studies with plant cells are compiled.

Keywords

Transgenic Plant Neomycin Phosphotransferase Full Speed SS34 Rotor Prehybridization Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lichtenstein C, Draper J (1985) Genetic engineering of plants. In: Glover DM (ed) DNA cloning, vol. II. IRL Press, Oxford, pp 67–119Google Scholar
  2. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8: 4321–4325PubMedCrossRefGoogle Scholar
  3. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299PubMedCrossRefGoogle Scholar
  4. Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-choloroform extraction. Anal Biochem 162: 156–159PubMedCrossRefGoogle Scholar
  5. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Lab, Cold Spring Harbor, Chap 7Google Scholar
  6. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Lab, Cold Spring Harbor, 9.31–9.46Google Scholar
  7. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517PubMedCrossRefGoogle Scholar
  8. Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13PubMedCrossRefGoogle Scholar
  9. Hames BD, Higgins SJ (1985) Nucleic acid hybridization: a practical approach. IRL Press, Oxford, ISBN 0–947946–23–3Google Scholar
  10. Allefs IIHM, Salentijn EMI, Krens FA, Rouwendal GIA (1990) Optimization of non-radioactive Southern blot hybridization: single copy detection and reuse of blots. Nucl Acids Res 18: 3099–3100PubMedCrossRefGoogle Scholar
  11. Bronstein I, McGrath P (1989) Chemiluminescence lights up. Nature 338: 599–600PubMedCrossRefGoogle Scholar
  12. Bronstein I, Voyta IC, Lazzari KG, Murphy O, Edwards B, Kricka LI (1990) Rapid and sensitive detection of DNA in Southern blots with chemiluminescence. BioTechniques 8: 310–314Google Scholar
  13. Cate RL, Ehrenfels ChW, Wysk M, Tizard R, Voyta IC, Murphy OJ, Bronstein I (1991) Genomic Southern analysis with alkaline-phosphatase-conjugated oligonucleotide probes and the chemiluminescent substrate AMPPD. GATA 8: 102–106Google Scholar
  14. During K (1991) Ultrasensitive chemiluminescent and colorigenic detection of DNA, RNA and proteins in plant molecular biology Anal Biochem 196: 433–438Google Scholar
  15. Höltke HI, Sagner G, Kessler Ch, Schmitz G (1992) Sensitive chemiluminescent detection of digoxigenin-labelled nucleic acids: a fast and simple protocol and its application. BioTechniques 12: 104–113Google Scholar
  16. Ishii T, Panaud O, Brar DS, Kush GS (1990) Use of non-radioactive digoxigenin-labelled DNA probes for RFLP analysis in rice. Plant Mol Biol Rep 8: 167–171CrossRefGoogle Scholar
  17. Kessler C (1992) Nonradioactive labeling and detection of biomolecules. Springer Laboratory. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. Kreike CM, de Koning IRA, Krens FA (1990) Non-radioactive detection of single-copy DNA-DNA hybrids. Plant Mol Biol Rep 8: 172–179CrossRefGoogle Scholar
  19. Neuhaus-Url G, Neuhaus G (1993) The use of the nonradioactive digoxigenin chemiluminescent technology for plant genomic Southern blot hybridization: a comparison with radioactivity. Transgen Res 2: 115–120CrossRefGoogle Scholar
  20. Panaud O, Magpantay G, McCouch S (1993) A protocol for non-radioactive DNA labelling and detection in the RFLP analysis of rice and tomato using single-copy probes. Plant Mol Biol Rep 11: 54–59CrossRefGoogle Scholar
  21. Pollard-Knight D (1990) Current methods in nonradioactive nucleic acid labelling and detection. Techniques 3: 113–132Google Scholar
  22. Zachar V, Mayer V, Aboagye-Mathiesen G, Norskov-Lauritsen N, Ebbesen P (1991) Enhanced chemiluminescence-based hybridization analysis for PCR-mediated HIV-1 DNA detection offers an alternative to 32P-labelled probes. J Virol Methods 33: 391–395PubMedCrossRefGoogle Scholar
  23. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Lab, Cold Spring HarborGoogle Scholar
  24. Baldo BA, Tovey ER (eds) (1989) Protein blotting. Karger, Basel Biorad. Mini Trans-blot instruction manualGoogle Scholar
  25. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354Google Scholar
  26. Bourouis M, Jarry B (1983) Vectors containing a prokaryotic dihydrofolate reductase gene transform Drosophila cells to methotrexate-resistance. EMBO J 2: 1099–1104PubMedGoogle Scholar
  27. Klimyuk V, Carrol B, Thomas C, Jones JDG (1993) Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J 3: 493–494PubMedCrossRefGoogle Scholar
  28. Mullis K, Faloona F (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155: 335–348PubMedCrossRefGoogle Scholar
  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254PubMedCrossRefGoogle Scholar
  30. De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518PubMedGoogle Scholar
  31. Thompson CJ, Rao Movva N, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6: 2519–2523PubMedGoogle Scholar
  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254PubMedCrossRefGoogle Scholar
  33. Cabanes-Bastos E, Day AG, Lichtenstein CP (1989) A sensitive and simple assay for neomycin phosphotransferase II activity in transgenic tissue. Gene 77: 169–177PubMedCrossRefGoogle Scholar
  34. Gritz L, Davies J (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25: 179–188PubMedCrossRefGoogle Scholar
  35. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254PubMedCrossRefGoogle Scholar
  36. Cabanes-Bastos E, Day AG, Lichtenstein CP (1989) A sensitive and simple assay for neomycin phosphotransferase II activity in transgenic tissue. Gene 77: 169–176PubMedCrossRefGoogle Scholar
  37. Henderson L, Rao AG, Howard J (1991) An immunoaffinity immobilized enzyme assay for neomycin phosphotransferase II in crude cell extracts. Anal Biochem 194: 64–68PubMedCrossRefGoogle Scholar
  38. McDonnell RE, Clark RD, Smith WA, Hinchee MA (1987) A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissues. Plant Mol Biol Rep 5: 380–386CrossRefGoogle Scholar
  39. Mittelsten Scheid O, Neuhaus-Url G (1995) The detection of neomycin phosphotransferase activity in plant extracts. In: Gartland K, Davey M (eds) Agrobacterium protocols. Methods in molecular biology. Humana, New Jersey (in press)Google Scholar
  40. Platt SG, Yang NS (1987) Dot assay for neomycin phosphotransferase activity in crude cell extracts. Anal Biochem 162: 529–535PubMedCrossRefGoogle Scholar
  41. Ramesh N, Osborne WRA (1991) Assay of neomycin phosphotransferase activity in cell extracts. Anal Biochem 193: 316–318PubMedCrossRefGoogle Scholar
  42. Reiss B, Sprengel R, Will H, Schaller H (1984) A new sensitive method for qualitative and quantitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30: 211218Google Scholar
  43. Staebell M, Tomes D, Weissinger A, Maddock S, Marsh W, Huffman G, Bauer R, Ross M, Howard J (1990) A quantitative assay for neomycin phosphotransferase activity in plants. Anal Biochem 185: 319–323PubMedCrossRefGoogle Scholar
  44. Balazs E, Bonneville JM (1987) Chloramphenicol acetyl transferase activity in Brassica spp. Plant Sci 50: 65–68CrossRefGoogle Scholar
  45. Gorman C, Moffat L, Howard B (1982) Recombinant genomes which express chloramphenicol acetyl transferase in mammalian cells. Mol Cell Biol 2: 1044–1051PubMedGoogle Scholar
  46. Hruby DE, Wilson EM (1992) Use of fluorescent chloramphenicol derivative as the substrate for chloramphenicol acetyltransferase assays. Methods Enzymol 216: 369–376PubMedCrossRefGoogle Scholar
  47. Sleigh MJ (1986) A nonchromatographic assay for expression of the chloramphenicol acetyltransferase gene in eukaryotic cells. Anal Biochem 156: 251–256PubMedCrossRefGoogle Scholar
  48. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254PubMedCrossRefGoogle Scholar
  49. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405CrossRefGoogle Scholar
  50. Martin T, Wöhner RV, Hummel S, Willmitzer L, Frommer WB (1992) The GUS reporter system as a tool to study plant gene expression. In: Gallagher SR (ed) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press San Diego, pp 23–43Google Scholar
  51. Mendel RR, Müller B, Schulze J, Kolesnikow V, Zelenin A (1989) Delivery of foreign genes to intact barley cells by high-velocity microprojectiles. Theor Appl Genet 78: 31–34CrossRefGoogle Scholar
  52. Stomp AM (1992) Histochemical localization of ß-glucuronidase. In: Gallagher SR (ed) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press, San Diego, pp 103–113Google Scholar
  53. Aflalo C (1991) Biologically localized firefly luciferase: a tool to study cellular processes. Int Rev Cytol 130: 269–323PubMedCrossRefGoogle Scholar
  54. Belas R, Mileham A, Cohn D, Hilmen M, Simon M, Silverman M (1982) Bacterial bioluminescence: Isolation and expression of the luciferase genes from Vibrio harveyi. Science 218: 791–792PubMedCrossRefGoogle Scholar
  55. De Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7: 725–737PubMedGoogle Scholar
  56. Millar AJ, Short SR, Hiratsuka K, Chua N-H, Kay SA (1992) Firefly luciferase as a reporter of regulated gene expression in higher plants. Plant Mol Biol Rep 10: 324–337CrossRefGoogle Scholar
  57. Ow D, Wood KV, DeLuca M, de Wet JR, Helinski DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856–859PubMedCrossRefGoogle Scholar
  58. Schneider M, Ow DW, Howell SH (1990) The in vivo pattern of firefly expression in transgenic plants. Plant Mol Biol 14: 935–47PubMedCrossRefGoogle Scholar
  59. Stanley PE (1992) A survey of more than 90 commercially available luminometers and imaging devices for low-light measurements of chemiluminescence and bioluminescence, including instruments for manual, automatic and specialized operation, for HPLC, LC, GLC and microtitre plates. Part 1: Descriptions. J Biolumin Chemilumin 7: 77–108PubMedCrossRefGoogle Scholar
  60. Stanley PE (1993) Commercially available luminometers and imaging devices for low-light measurements and kits and reagents utilizing bioluminescence or chemiluminescence–survey update 1. J Biolumin Chemilumin 8: 237–240PubMedCrossRefGoogle Scholar
  61. Wood KV (1991) Recent advances and prospects for use of beetle luciferases as genetic reporters. In: Stanley PE, Kricka J (eds) Bioluminescence and chemiluminescence: current status Wiley, Chichester, 543–546Google Scholar
  62. Wood KV, Amy Lam Y, Seliger HH, McElroy WD (1989) Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science 244: 700–702PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. Fütterer
  • A. Gisel
  • V. Iglesias
  • A. Klöti
  • B. Kost
  • O. Mittelsten Scheid
  • G. Neuhaus
  • G. Neuhaus-Url
  • M. Schrott
  • R. Shillito
  • G. Spangenberg
  • Z. Y. Wang

There are no affiliations available

Personalised recommendations