mRNA Composition of Rat Liver Tumors Initiated by Aromatic Amines

  • Annette Bitsch
  • Martina Jost
  • Hedwig Richter
Conference paper
Part of the NATO ASI Series book series (volume 88)


Many polycyclic aromatic amines are mutagenic. Their genotoxic properties are explained by the formation of metabolites that react with DNA by forming adducts (Kriek 1969, Franz et al. 1986). These DNA adducts may cause mutations which are responsible for tumorigenic effects. The carcinogenesis induced by aromatic amines is very often characterized by high tissue specificity. Chronic feeding of 2-acetylaminofluorene (AAF) typically produces liver tumors in rodents, 2-acetylaminophenanthrene (AAP) mammary tumors and trans-4-acetylaminostilbene (AAS) Zymbal’s gland tumors (Neumann et al. 1970). Many attempts have been made to correlate DNA binding or the resulting lesions with tissue specific tumor formation. However, this phenomenon cannot be readily explained by the extent of DNA modifications. All three amines generate comparable DNA adduct levels in rat liver and moreover in liver more extensively than in any other tissue (Neumann 1983, Ruthsatz and Neumann 1988, Gupta et al. 1989). Therefore, DNA binding may reflect the formation of some critical lesions related to tumor initiation but is not sufficient to explain carcinogenic effects. AAS and AAP are able to produce liver tumors in rats, but only if initiation is followed by some promotion treatment (Hammerl 1989). AAF in contrast is a complete carcinogen for this tissue.


Aromatic Amine Translation Product Control Liver Liver Carcinogenesis Morris Hepatoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N.L., Esquer-Blasco, R., Hofmann, J.P., Anderson N.G. (1991) A two-dimensional gel database of rat liver proteins useful in gene regulation and drug effect studies. Electrophoresis 12, 907–930.PubMedCrossRefGoogle Scholar
  2. Aviv, H. and Leder, P. (1972) Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc. Nat. Acad. Sci. USA 69, 1408.PubMedCrossRefGoogle Scholar
  3. Bitsch, A., Roschlau, H., Deubelbeiss, C, Neumann, H.-G. (1993) The structure and function of the H-ras-protooncogene are not altered in rat liver tumors initiated by 2-acetylaminofluorene, 2-acetylaminophenanthrene and trans-4-acetylaminostilbene. Toxicology Letters 67, 173–186.PubMedCrossRefGoogle Scholar
  4. Calder, I.C. and Williams, P.J. (1974) The synthesis and reactions of some carcinogenic N-(2-phenanthryl)hydroxylamine derivatives. Aust. J. Chem. 27, 1791–1795.Google Scholar
  5. Canuto, R.A., Tessitore, L., Muzio, G., Autelli, R., Baccino, F.M. (1993) Tissue protein turnover during liver carcinogenesis. Carcinogenesis 14 (12), 2581–1583.PubMedCrossRefGoogle Scholar
  6. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., Rugger, W.J. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochem. 18, 5294–5296.CrossRefGoogle Scholar
  7. Franz, R., Schulten, H.R., Neumann, H.G. (18\986) Identification of nucleic acid adducts from trans-4-acetylaminostilbene. Chem. Biol. Interact. 59, 281–293.Google Scholar
  8. Gupta, R.C, Earley, K., Fullerton, N.F, Beland, F.A. (1989) Formation and removal of DNA adducts in target and nontarget tissues of rats administered multiple doses of 2-acetylaminophenanthrene. Carcinogenesis 10, 2025–2033.PubMedCrossRefGoogle Scholar
  9. Hammerl, R. (1989) Zur synergistischen Wirkung aromatischer Amine bei Der Initiierung von Tumoren in der Rattenleber. Dissertation, Tiermedizinische Fakultat, Universitat Munchen.Google Scholar
  10. Hinds, P.W., Finlay, C.A., Quartin, R.S., Baker S.J., Fearon, E.R., Vogelstein, B., Levine, A.J. (1990) Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Different. 1, 571–580.Google Scholar
  11. Hsieh, L.L., Shinozuka, H., Weinstein, LB. (1991) Changes in expression of cellular oncogenes and endogenous retrovirus-like sequences during hepatocarcinogenesis induced by a peroxisome proliferator. Br. J. Cancer 64(5), 815–820.PubMedCrossRefGoogle Scholar
  12. Hunter, T. (1991) Cooperation between oncogenes. Cell 64(2), 249–270.PubMedCrossRefGoogle Scholar
  13. Husmans, B., Gustafsson, J.A., Andersson, G. (1989) Biogenesis of the somatogenic receptor in rat liver. J. Biol. Chem. 264, 690.Google Scholar
  14. Kadofoku, T., Sato, T. (1985) Detection of the changes in cellular proteins n regenerating rat liver by high-resolution two-dimensional electrophoresis. J. Chromtogr. 343, 51–58.CrossRefGoogle Scholar
  15. Kitahara, A., Satoh, K., Nishimura, K., Ishikawa, T., Ruike, K., Sato, K., Glutathione-S-transferase during chemical hepatocarcinogenesis. Cancer Res. 44, 2698–2703.Google Scholar
  16. Kriek, E. (1969) On the mechanism of action of carcinogenic aromatic amines. I. Binding of 2-acetylaminofluorene and N-hydroxy-2-acetylaminofluorene to rat liver nucleic acids in vivo. Chem. Biol. Interact. 1, 3–17.PubMedCrossRefGoogle Scholar
  17. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  18. Land, H., Parada, L.F., Weinberg, R.A. (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602.PubMedCrossRefGoogle Scholar
  19. Lindahl, R., Clark, R., Evces, S. (1982) Histochemical localization of aldehyde dehydrogenase during rat hepatocarcinogenesis. Proc. Am. Assoc. Cancer Res. 25, 139.Google Scholar
  20. Metzler, M. and Neumann, H.-G. (1971) Zur Bedeutung chemisch-biologischer Wechselwirkungen fur die toxische und krebserzeugende Wirkung aromatischer Amine. III Synthese und Analytik einiger Stoffwechselprodukte von trans-4-Dimethylaminostilben, cis-4-Dimethylaminostilben und 4-Dimethylaminobenzyl. Tetrahedron 27, 2225–2246.CrossRefGoogle Scholar
  21. Neumann, H.-G. (1983) Role of extent and persistence of DNA modifications in chemical carcinogenesis by aromatic amines. Rec. Res. Cancer Res. 84, 77–89.Google Scholar
  22. Neumann, H.-G. (1986) The role of DNA damage in chemical carcinogenesis of aromatic amines. J. Cancer Res. Clin. Oncol. 112, 100–106.PubMedCrossRefGoogle Scholar
  23. Neumann, H.-G., Metzler, M., Brachmann, I., Thomas, C. (1970) Zur Bedeutung chemisch-biologischer Wechselwirkungen fur die toxische und krebserzeugende Wirkung aromatischer Amine. I. Krebserzeugende Wirksamkeit einiger 4-Aminostilben- und 4-Aminobibenzyl- Verbindungen. Z. Krebsforsch. 74, 200.PubMedCrossRefGoogle Scholar
  24. Pemberton, R.E., Liberti, P., Baglioni, C. (1975) Isolation of messenger RNA from polysomes by chromatography on oligo (dT) cellulose. Anal. Biochem. 66, 18–28.PubMedCrossRefGoogle Scholar
  25. Peraino, C, Staffeidt, E.F., Ludeman, V.A. (1981) Early appearance of histochemically altered hepatocyte foci and liver tumors in female rats treated with carcinogens one day after birth. Carcinogenesis 2, 463–465.PubMedCrossRefGoogle Scholar
  26. Roberts, B.E. and Paterson, B.M. (1973) Efficient translation of tobacco mosaic virus RNA and globin 9S RNA in cell-free system from commercial wheat-germ. Proc. Nat. Acad. Sci. USA 70, 2330–2334.PubMedCrossRefGoogle Scholar
  27. Ruthsatz, M. and Neumann, H.-G. (1988) Synergistic effects on the initiation of rat liver tumors by trans-4-acetylamino-stilbene and 2-acetylaminofluorene, studied at the level of DNA adduet formation. Carcinogenesis 9, 265–269.PubMedCrossRefGoogle Scholar
  28. Sell, S., Hunt, J.M., Knoll, B.J., Dunsford, H.A. (1987) Cellular events during hepatocarcinogenesis in rats and the question for pre-malignancy. Adv. Cancer Res. 48, 37–111.PubMedCrossRefGoogle Scholar
  29. Sugioka, Y., Fujii-Kuriyama, Y., Kitagawa, T., Muramatsu, M. (1985) Changes in polypeptide pattern of rat liver cells during chemical hepatocarcinogenesis. Cancer Res. 45, 365–378.PubMedGoogle Scholar
  30. Takami, H., Busch, F.N., Morris, H.P., Busch, H. (1979) Comparison of salt-extractable nuclear proteins of regenerating liver, fetal liver, and Morris hepatomas 9618 A and 3924 A. Cancer Res. 39, 2096–2105.PubMedGoogle Scholar
  31. Wirth, P.J., Benjamin, T., Schwartz, D.M., Thorgeirsson, S.S. (1986) Sequential analysis of chemically induced hepatoma development by two-dimensional electrophoresis. Cancer Res. 46, 400–413.PubMedGoogle Scholar
  32. Wirth, P.J., Sambasiva, R., Evarts, R.P. (1987) Coordinate polypeptide expression during hepatocarcinogenesis in male F-334 rats: comparison of Solt-Farber and Reddy models. Cancer Res. 47(9–12), 2839–2851.PubMedGoogle Scholar
  33. Zeindl-Eberhart, E. and Rabes, H.M. (1992) Variant protein patterns in hepatomas and transformed liver cell lines as determined by high resolution two-dimensional gel electrophoresis (2DE). Carcinogenesis 13(7), 1177–83.PubMedCrossRefGoogle Scholar
  34. Zeindl-Eberhart, E., Jungblut, P.R., Otto, A., Rabes, H.M. (1993) Further analysis of protein variants in chemically induced rat hepatomas and transformed liver cell lines. J. Cancer Res. and Clin. Oncol. Suppl. 2, Vol. 119.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Annette Bitsch
    • 1
  • Martina Jost
    • 1
  • Hedwig Richter
    • 1
  1. 1.Institute of Pharmacology and ToxicologyUniversity of WürzburgWurzburgGermany

Personalised recommendations