Skip to main content

Prinzipien der Strahlentherapie

  • Chapter
Kompendium Internistische Onkologie

Zusammenfassung

Die zellulären, insbesondere molekularen Veränderungen, die nach Bestrahlung zum Tod der Zelle führen, sind nicht in allen Details geklärt. Als empfindlichstes Target für ionisierende Strahlen gilt die DNS. Nicht reparierte DNS-Läsionen wie Doppelstrangbrüche können sich zu chromosomalen Aberrationen entwickeln, die nach wenigen Zellzyklen den Verlust der Teilungsfähigkeit zur Folge haben. Die Zelle unterliegt dem sogenannten reproduktiven Zelltod.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Baumann M, Tahian A, Budach W (1993) Radiosensitivity of tumor cells: The predictive value of SF2. In: Beck-Bornholt H-P (ed) Current topics of radiobiology of tumors. Springer, Berlin Heidelberg New York Tokyo, pp 87–98

    Google Scholar 

  • Beck-Bornholt H-P (ed) (1993) Current topics in clinical radiobiology of tumors. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Hoeckel M, Knoop C, Schienger K et al. (1993) Intratumoral p02 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45–50

    Article  Google Scholar 

  • Streffer C (1987) Biologische Grundlagen der Strahlentherapie. In: Scherer E (Hrsg) Strahlentherapie. Springer, Berlin Heidelberg New York Tokyo, S 213–281

    Google Scholar 

  • Vaupel P, Schienger K, Knoop C, Hoeckel M (1991) Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized 02 tension measurements. Cancer Res 51:3316–3322

    PubMed  CAS  Google Scholar 

  • Withers HR (1992) Biologic basis for radiation therapy. In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology. Lippincott, Philadelphia, p 64–96

    Google Scholar 

Literatur

  • ICRU Report 50 (1994) Prescribing, recording and reporting photon beam therapy. Washington/DC

    Google Scholar 

  • Illidge TM, Hamilton CR (1994) Principles of radiation oncology In: Sherman CD, Calman KC, Eckhardt S et al. (eds) Manual of clinical oncology. Springer, Berlin Heidelberg New York Tokyo, pp 171–202

    Google Scholar 

  • Rhomberg W (1986) Grundlagen, Bedeutung und Indikationen der Strahlentherapie In: Schmoll HJ, Peters HD, Fink U (Hrsg) Kompendium der internistischen Onkologie, Teil 1. Springer, Berlin Heidelberg New York Tokyo, S 428–454

    Google Scholar 

  • Sauer R (1984) Grundlagen der Strahlentherapie In: Sauer R (Hrsg) Strahlentherapie und Onkologie. Urban & Schwarzenberg, München Wien Baltimore, S 85–189

    Google Scholar 

Literatur

  • Budach V (1991) The role of fast neutrons in radiooncology — a critical appraisal. Strahlenther Onkol 167:677–692

    PubMed  CAS  Google Scholar 

  • Catterall M, Errington RD, Bewley DK (1987) A comparison of clinical and laboratory data on neutron therapy for locally advanced tumors. Int J Radiat Oncol Biol Phys 13:1783–1791

    Article  PubMed  CAS  Google Scholar 

  • Griffin TW, Pajak TF, Laramore GE, Duncan W, Richter MP, Hendrickson FR, Maor MH (1988) Neutron vs photon irradiation of inoperable salivary gland tumors: results of an RTOG-MRC Cooperative Randomized Study. Int J Radiat Oncol Biol Phys 15:1085–1090

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ (1978) Radiobiology for the Radiobiologist. 2nd edn. Harper & Row, New York Evanston San Francisco London

    Google Scholar 

  • Russell KJ, Caplan RJ, Laramore GE et al. (1994) Photon versus fast neutron external beam radiotherapy in the treatment of locally advanced prostate cancer: results of a randomized prospective trial. Int J Radiat Oncol Biol Phys 28:47–54

    Article  PubMed  CAS  Google Scholar 

  • Schmitt G, Mills ED, Levin V, Pape H, Smit BJ, Zamboglou N (1989) The role of neutrons in the treatment of soft tissue sarcomas. Cancer 64:2064–2068 (abstract)

    Article  PubMed  CAS  Google Scholar 

  • Stone RS (1948) Neutron therapy and specific ionization. Am J Roentgen Radium Ther 59:771–785

    CAS  Google Scholar 

  • Wells G, Koh WJ, Pelton J, et al. (1989) Fast neutron teletherapy in advanced epidermoid head and neck cancer. A review. Am J Clin Oncol 12:295–300

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Benk V, Mazeron JJ, Grimard L (1990) Comparison of curietherapy versus external irradiation combined with curietherapy in stage II squamous cell carcinomas of the mobile tongue. Radiother Oncol 18:339–347

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ, Hall EJ (1991) Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys 20:181–190

    Article  PubMed  CAS  Google Scholar 

  • Freiha FS, Bagshaw MA (1984) Carcinoma of the prostate: results of post-irradiation biopsy. Prostate 5:19

    Article  PubMed  CAS  Google Scholar 

  • Harrison LB, Zelefsky MJ, Armstrong JG, Schupak KD, Brennan MF (1993) Brachytherapy and function preservation in the localized management of soft tissue sarcomas of the extremity. Sem Radiat Oncol 3:260–269

    Article  Google Scholar 

  • Hilaris BS, Fuks Z, Nori D, Fair WA, Whitmore WF (1991) Interstitial irradiation in prostatic cancer: report of 10-year results. In: Sauer R (ed) Interventional radiation therapy. Springer, Berlin Heidelberg New York Tokyo, pp 235–240

    Google Scholar 

  • Hoffstetter S, Mailssard L, Forcard JJ, Pernot M (1986) A propos de 108 cas traites au Centre Alexis Vautrin. J Eur Radiother 7:101–110

    Google Scholar 

  • Housset M, Baillet F, Dessard-Diana B, Martin D, Miglianico L (1987) A retrospective study of three treatment techniques for T1–T2 base of tongue lesions: surgery plus postoperative radiation, external radiation plus interstitial implantation and external radiation alone. Int J Radiat Oncol Biol Phys 13:511–516

    Article  PubMed  CAS  Google Scholar 

  • Mazeron JJ, Richaud P (1984) Compte rendu de la XVIII réunion du groupe Européen de Curietherapie. Session consacrée aux cancers de la lèvre. J Eur Radiother 5:50–56

    Google Scholar 

  • Mazeron JJ, Langlois D, Glaubiger D et al. (1987) Salvage irradiation of oropharyngeal cancers using iridium 192 wire implants: 5-year results of 70 cases. Int J Radiat Oncol Biol Phys 13:957–962

    Article  PubMed  CAS  Google Scholar 

  • Papillon J, Montbarbon JF, Gerard JP et al. (1989) Interstitial Curietherapy in the conservative treatment of anal and rectal cancers. Int Radiat Oncol Biol Phys 17:1161–1168

    Article  CAS  Google Scholar 

  • Pernot M, Hoffstetter S, Forcard JJ (1991) Interstitial LDR curetherapy for head and neck cancers in 1991. Activity 5(3): 122–130

    Google Scholar 

  • Pernot M, Malissard L, Aletti P, Hoffstetter S, Forcard JJ, Bey P (1990) Iridium-192 brachytherapy in the management of 147 stage T2 NO oral tongue carcinoma treated with irradiation alone. Int J Radiat Oncol Biol Phys [Suppl II]: 798

    Google Scholar 

  • Scardino PT, Wheeler TM (1988) Local control of prostate cancer with radiotherapy: frequency and prognostic significance of positive results of postirradiation prostate biopsy. NCI Monogr 7:95

    PubMed  Google Scholar 

  • Sommerkamp H, Knüfermann H, Wannenmacher M (1987) Grenzen der Strahlentherapie beim undifferenzierten Prostatakarzinom. II. Interstitielle Strahlentherapie. Tumor Diagnostik Therapie 8:22–27

    Google Scholar 

  • Van der Werf-Messing BHP, Stap WCJ (1981) Carcinoma of the urinary bladder (category T1 Nx M0) treated either by radium implant or by transurethral resection only. Int J Radiat Oncol Biol Phys 7:299

    Article  PubMed  Google Scholar 

  • Van der Werf-Messing BHP, Facr PD, Putten WLJ van (1989) Carcinoma of the urinary bladder category T2,3 Nx M0 treated by 40 Gy external irradiation followed by cesium 137 implant at reduced dose (50%). Int J Radiat Oncol Biol Phys 16:369–371

    Article  PubMed  Google Scholar 

Literatur

  • Busch M, Sauerwein W (1995) Klinisch-methodische Grundlagen der Brachytherapie. In: Scherer E, Sack H (Hrsg) Strahlentherapie — Radiologische Onkologie, 4. Aufl. Springer, Berlin Heidelberg New York Tokyo (in Vorbereitung)

    Google Scholar 

  • Glaser FH, Grimm D, Haensgen G, Rauh D, Schuchardt V (1985) Klinische Erfahrungen bei der Afterloading-Kurzzeittherapie im Vergleich zur konventionellen Brachytherapie bei der Behandlung gynäkologischer Tumoren. Strahlentherapie 161:459–475

    PubMed  CAS  Google Scholar 

  • Harbert JC (1987) Nuclear medicine therapy. Thieme, New York

    Google Scholar 

  • Patel FD, Sharma SC, Negi P, Ghoshal S, Gupta BD (1993) Low dose rate vs. high dose rate brachytherapy in the treatment of carcinoma of the uterine cervix: a clinical trial. Int J Radiol Oncol Biol Phys 28:335–341

    Article  Google Scholar 

  • Perez CA, Garcia DM, Grigsby PW, Williamson J (1992) Clinical applications of brachytherapy. In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology, 2nd ed. Lippincott, Philadelphia, pp 300–367

    Google Scholar 

  • Pierquin B, Marinello G (1992) Manuel pratique de curietherapie. Hermann, Paris

    Google Scholar 

  • Scalliet P, Gerbaulet A, Dubray B (1993) HDR versus LDR gynecological brachytherapy revisited. Radiother Oncol 28:118–126

    Article  PubMed  CAS  Google Scholar 

  • Smit BJ, Du Toit JP, Groenewald WA (1989) An indwelling intra-uterine tube to facilitate high dose rate intracavitary therapy for carcinoma of the cervix. Br J Radiol 22:68–69

    Article  Google Scholar 

Literatur

  • Abe M, Takahashi M (eds) (1991) Intraoperative radiation therapy. Pergamon Press, New York

    Google Scholar 

  • Schildberg FW, Willich N, Krämling HJ (eds) (1993) Intraoperative radiation therapy. Blaue Eule, Essen

    Google Scholar 

Literatur

  • Feldmann HJ, Seegenschmiedt MH, Molls M (1994) Hyperthermia — its actual role in radiation oncology, part III. Strahlentherapie und Onkologie (im Druck)

    Google Scholar 

  • Felix R, Lemke HU, Miller G (Hrsg.) Hyperthermie: Ein Beispiel für die Minimal Invasive Medizin. Med Tech 4:4–39

    Google Scholar 

  • Molls M (1992) Hyperthermia — the actual role in radiation oncology and future prospects, part I. Strahlentherapie und Onkologie 168:183–190

    PubMed  CAS  Google Scholar 

  • Seegenschmiedt MH, Feldmann HJ, Molls M (1993) Hyperthermia — its actual role in radiation oncology, part II. Strahlentherapie und Onkologie 11:635–654

    Google Scholar 

  • Seegenschmiedt MH, Feldmann HJ, Molls M (1994) Radiotherapie und Hyperthermie — ein neuer Weg in der interdisziplinären Tumortherapie. Jahrbuch der Radiologie, Biermann, S 161–175

    Google Scholar 

Literatur

  • Adams GE (1973) Chemical radiosensitization of hypoxic cells. Br Med Bull 29:48–53

    PubMed  CAS  Google Scholar 

  • Bamberg M, Scherer E (1986) Verbesserung der Effektivität der radiologischen Tumortherapie durch elektronenaffine Substanzen In: Heuck F, Scherer E (Hrsg) Handbuch der Medizinischen Radiologie, Bd XX. Springer, Berlin Heidelberg New York Tokyo, S 687–706

    Google Scholar 

  • Beard CJ, Coleman CN, Kinsella T (1993) Radiation sensitizers. In: DeVita VT Jr, Hellman S, Rosenberg SA (eds) Cancer. Principles & practice of oncology. Lippincott, Philadelphia, pp 2701–2713

    Google Scholar 

  • Hellmann K, Rhomberg W (1992) Radiotherapeutic enhancement by razoxane. Cancer Treat Rev 18:225–240

    Article  Google Scholar 

  • Kanclerz A, Chapman JD (1988) Influence of Misonidazole, SR 2508, RSU 1069 and WR-2721 on spontaneous metastases in C57 BL mice. Int J Radiat Oncol Biol Phys 14:309–316

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Budach W, Budach V, Stuschke M, Dinges S, Sack H (1993) The TCD 50 and regrowth delay assay in human tumor xenografts: differences and implications. Int J Radiat Oncol Biol Phys 25:259–268

    Article  PubMed  CAS  Google Scholar 

  • Dunst J, Sauer R (1994) Simultane Radiochemotherapie. Strahlenther Onkol 169:205–212

    Google Scholar 

  • Maase H von der (1994) Experimental studies on interactions of radiation and cancer chemotherapeutic drugs in normal tissues and solid tumors. Radiother Oncol 7:47–68

    Article  Google Scholar 

  • Phillips TL (1994) Terminology for chemoradiation effects. In: John MJ, Flam MS, Legha SS, Phillips TL (eds) Chemoradiation: An integrated approach to cancer treatment. Lea & Febiger, Philadelphia, pp 11–17

    Google Scholar 

  • Stuschke M, Budach V, Budach W, Erhard J, Sack H (1989) Multicellular spheroids from human soft tissue sarcomas: radiocurability and dose fractionation effect. Int J Radiat Biol 56:549–552

    Article  PubMed  CAS  Google Scholar 

  • Tannock IF (1989) Combined modality treatment with radiotherapy and chemotherapy. Radiother Oncol 16:83–101

    Article  PubMed  CAS  Google Scholar 

  • Tannock IF (1992) Potential for therapeutic gain from combined-modality treatment. Front Radiat Ther Oncol 26:1–15

    PubMed  CAS  Google Scholar 

  • Vokes EE, Weichselbaum RR (1990) Concomitant chemoradiotherapy: rationale and clinical experience in patients with solid tumors. J Clin Oncol 8:911–934

    PubMed  CAS  Google Scholar 

Literatur

  • Donaldson SS, Glick JM, Wilber JR (1984) Adriamycin activating a recall phenomen after radiation therapy. Ann Int Med 81:407–408

    Google Scholar 

  • Eifel PJ, McClure S (1989) Severe chemotherapy-induced recall of radiation mucositis in a patient with non-Hodgkin lymphoma of Waldeyer’s ring. Int J Radiat Oncol Biol Phys 17:907–909

    Article  PubMed  CAS  Google Scholar 

  • Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    PubMed  CAS  Google Scholar 

  • Fajardo LF (1989) Morphologic patterns of radiation injury. In: Vaeth JM, Meyer JL (eds) Radiation tolerance of normal tissues (Front Radiat Ther Oncol, vol 23.) Karger, Basel, pp 75–84

    Google Scholar 

  • Fajardo LF, Eltringham JR, Stewart JR (1976) Combined cardiotoxicity of adriamycin and X-Irradiation. Lab Invest 34:86–96

    PubMed  CAS  Google Scholar 

  • Fritz-Niggli H (1991) Strahlengefährdung/Strahlenschutz. Ein Leitfaden für die Praxis, 3. Auflage. Huber, Bern Stuttgart Toronto

    Google Scholar 

  • Hall EJ (1988) Radiobiology for the Radiologist, 3rd edn. Lippincott, Philadelphia

    Google Scholar 

  • Hill SA, Travis EL, Denekamp J (1986) Actinomycin D and radiation effects on mouse lung. Eur J Cancer Clin Oncol 22:577–582

    Article  PubMed  CAS  Google Scholar 

  • Lauk S, Rüth S, Trott KR (1987) The effects of dose-fractionation on radiation-induced heart disease in rats. Radiother Oncol 8:363–367

    Article  PubMed  CAS  Google Scholar 

  • Lederman G, Sheldon T, Chaffey J, Herman T, Gelman R, Coleman N (1987) Cardiac Disease after mediastinal irradiation for seminoma. Cancer 60:772–776

    Article  PubMed  CAS  Google Scholar 

  • Phillips TL, Fu KK (1976) Quantification of combined radiation therapy and chemotherapy effects on critical normal tissues. Cancer 37:1186–1200

    Article  PubMed  CAS  Google Scholar 

  • Redpath JL, Colman M (1979) The effect of adriamycin and actinomycin D on radiation-induced skin reactions in mouse feet. Int J Radiat Oncol Biol Phys 5:483–486

    Article  PubMed  CAS  Google Scholar 

  • Rezvani M, Heryet JC, Hopewell JW (1989) Effects of single dose of gamma-radiation on pig lung. Radiother Oncol 14:133–142

    Article  PubMed  CAS  Google Scholar 

  • Rubin P (1984) Late effects of chemotherapy and radiation therapy: A new hypothesis. Int J Radiat Oncol Biol Phys 10:5–34

    PubMed  CAS  Google Scholar 

  • Rubin P (1993) Clinical Oncology. Saunders, Philadelphia

    Google Scholar 

  • Rubin P, Wasserman TH (1988) The late effects of toxicity scoring. Int J Radiat Oncol Biol Phys 14:S28–S29

    Google Scholar 

  • Sauer R, Keilholz L (1991) The central nervous system: clinical aspects. In: Scherer E, Streffer C, Trott KR (eds) Radiopathology of Organs and Tissues. Springer Berlin Heidelberg New York Tokyo, pp 213–242

    Google Scholar 

  • Steel GG, Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy chemotherapy. The concept of additivity. Int J Radiat Oncol Biol Phys 5:85–91

    PubMed  CAS  Google Scholar 

  • Stevenson-Moore P, Epstein JB (1993) The management of teeth in irradiated sites. Oral Oncol, Eur J Cancer 29B:39–43

    CAS  Google Scholar 

  • Stewart FA, Luts A, Begg AC (1987) Tolerance of previously irradiated mouse kidney to cis-diamminedichloroplatinum (II). Cancer Res 47:1016–1021

    PubMed  CAS  Google Scholar 

  • Stewart JR, Fajardo LF (1984) Dose response in human and experimental radiation induced heart disease: An Update. Prog Cardiovasc Dis

    Google Scholar 

  • Travis EL, Bucci L, Fang MZ (1990) Residual damage in mouse lungs at long intervals after cyclophosphamide treatment. Cancer Res 50:2139–2145

    PubMed  CAS  Google Scholar 

  • Trott KR (1986) Radiatio-chemotherapy interactions. Int J Radiat Oncol Biol Phys 12:1409–1413

    Article  PubMed  CAS  Google Scholar 

  • Trott KR, Herrmann T. (1991) Radiation effects on abdominal organs. In: Scherer E, Streffer C, Trott KR (eds) Radiopathology of organs and tissues. Springer, Berlin Heidelberg New York Tokyo, pp 313–346

    Google Scholar 

  • Vanuytsel L, Feng Y, Landuyt W, Begg A, Van der Schueren E (1988) Effect of simultaneous administration of bleomycin on the acute skin reactions of mice after single and fractionated doses of radiation. Int J Radiat Oncol Biol Phys 14:103–108

    Article  PubMed  CAS  Google Scholar 

  • Vegesna V, Withers R, McBridge WH, Holly E (1992) Adriamycin-induced recall of radiation pneumonitis and epilation in lung and hair follicles of mouse. Int J Radiat Oncol Biol Phys 23:977–981

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Heidelberg

About this chapter

Cite this chapter

Molls, M. et al. (1996). Prinzipien der Strahlentherapie. In: Schmoll, HJ., Höffken, K., Possinger, K. (eds) Kompendium Internistische Onkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79214-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79214-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58370-7

  • Online ISBN: 978-3-642-79214-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics