Advertisement

Manipulation of the Ligand Structure as an Effective and Versatile Tool for Modification of Active Site Properties in Homogeneous Ziegler-Natta Catalyst Systems

  • Abbas Razavi
  • Dominique Vereecke
  • Lilian Peters
  • Katty Den Dauw
  • Léa Nafpliotis
  • Jerry L. Atwood

Abstract

The molecular structures of a series of group 14 metallocenes with prochiral and chiral ligand frameworks have been determined by single crystal X-ray diffraction. Correlation of the polymerization behavior of these catalyst precursors with the properties of the polymers they produce has demonstrated that relatively minor steric perturbations (caused by cyclopentadienyl substituents or by slight modification in the bridge) have a pronounced effect on the mechanism of their polymerization, and the microtacticity of the resulting poly olefins. The pair-wise comparison of the molecular structures, polymerization behaviors, and polymer properties of four metallocenes: Isopropylidene(cyclopentadienyl- fluoreny 1)ZrCl2, isopropylidene(3-methylcyclopentadienyl-fluoreny 1)ZrCl2, isopropylidene (3-t-butylcyclopentadienyl-fluorenyl)ZrCl2, and [1,2-(cyclopentadienyl-fluorenyl)ethane] ZrCl2, all having the same basic molecular skeleton with mixed aromatic ligand framework, has lead to the determination of the impact of the steric bulk of the positional substituents on the regio- and stereoselectivity of the final catalysts. By employing the molecular structure of the monoalkyl cation, [isopropylidene(cyclopentadienyl-fluorenyl) ZrMe]+ as a “close-to-reality” model for the active site and application of the generally accepted stereodifferentiation principles, the relevance of different structural factors becomes evident. It has been shown that for the described catalyst precursors, the syndiospecificity, hemiisospecificity, and isospecificity is further dependent on the dynamically selective behavior of the chain with the free, restricted, or inhibited migration (a mechanism which prevails throughout the entire polymerization processes).

Keywords

Isotactic Polypropylene Versatile Tool Ligand Structure Propylene Polymerization Methyl Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.a.
    Ewen JA (1986) Ligand effects on Metallocene catalyzed polymerizations. In: Keii, Soga K (eds) Catalytic polymerization of olefins, Elsevier New York, p 271Google Scholar
  2. b.
    Miya S, Yoshimura T, Mise T, Yamazaki H (1988) Polym Prep Jpn 37: 285;Google Scholar
  3. c.
    Mise T, Yamazaki H (1989) Chem Letters 1853Google Scholar
  4. d.
    Piccolrovazzi N, Pino P, Consiglio G, Sironi A, Moret M (1990) Organometallics 9: 3098;CrossRefGoogle Scholar
  5. e.
    Roll W, Brintzinger HH, Reiger B, Zolk A (1990) Angew Chem Int Ed Engl 29: 179;CrossRefGoogle Scholar
  6. f.
    Spaleck W, Antberg W, Rohrmann J, Winter A, Bachmann B, Kiprof P, Behm J, Herrmann WA (1992) Angew Chem Int Ed Engl 10: 31;Google Scholar
  7. g.
    Chien JCW, Rieger B, Sugimoto R, Mallin D, Rausch MD (1989) Catalytic olefin polymerization, Proceedings of the International Symposium on Recent Developments in Olefin Polymerization Catalysts, Tokyo, October 23–25, 535Google Scholar
  8. 2.
    Kaminsky W (1986) Angew Makromol Chem 145/146: 149; and lb, le, le, IfGoogle Scholar
  9. 3.
    a. Ewen JA, Jones LR, Razavi A (1988) J Am Chem Soc 110: 6255CrossRefGoogle Scholar
  10. b.
    Razavi A, Ferrara JD (1992) J Orgmet Chem 435: 299CrossRefGoogle Scholar
  11. a.
    US patent No. 5,036,034 and EP patent application 0 537 130 AlGoogle Scholar
  12. b.
    Razavi A (1992) Presentation to International Symposium on Advances in Olefin, Cycloolefin and Diolefin polymerization, Lyon (France) — April 12–17.Google Scholar
  13. c.
    Razavi A (1992) Proceedings of Second International Business Forum on Specialty Polyolefins. September 22–24;Google Scholar
  14. d.
    Razavi A, Atwood J (1993) J Organomet Chem 459: 117CrossRefGoogle Scholar
  15. a.
    Zambelli A, Grassi A (1991) Maromol Chem Rapid Commun 12: 529;CrossRefGoogle Scholar
  16. b.
    Kaminsky W, Engelhausen R, Zoumis K (1992) Makromol Chem 193: 1643;CrossRefGoogle Scholar
  17. c.
    Castonguay LA, Rappé AK (1992) J Am Chem Soc 114: 5832;CrossRefGoogle Scholar
  18. d.
    Kawamura — Kuribayashi H, Koga N, Morokuma K (1992) J Am Chem Soc 1134: 8687;CrossRefGoogle Scholar
  19. e.
    Corradini P, Busico V, Cavallo L, Guerra G, Vacatello M, Venditto V (1992) Journal of Molecular catalysis, 74: 433;CrossRefGoogle Scholar
  20. f.
    Kawamura — Kuribayashi H, Koga N, Morokuma (1992) J Am Chem Soc 114: 8687CrossRefGoogle Scholar
  21. g.
    Asanuma T, Nishimori Y, Ito M, Shiomura T (1993) Makromol Chem Rapid Comm. 14: 315CrossRefGoogle Scholar
  22. 6.
    Razavi A, Thewald U (1993) J Organomet Chem 445: 111CrossRefGoogle Scholar
  23. 7.
    Kowala C, Wailes PC, Weigold H Wunderlic JA (1974) JCS Chem Comm 993Google Scholar
  24. a.
    Kowala C, Wunderlic JA (1976) Acta Cryst B32: 820CrossRefGoogle Scholar
  25. 8.
    Alt HG (1979) photoreaktionen an Uebergangsmetal- Alkyl und Aryl-complexen, Habilitation thesis, Universitaet Bayreuth GermanyGoogle Scholar
  26. 9.
    Giannetti E, Nieoletti GM, Mazzocci R (1985) J Poly Sei Poly Chem Ed 23: 2117CrossRefGoogle Scholar
  27. 10.
    Razavi A, Atwood J (1993) J Am Chem Soc 115: 7529CrossRefGoogle Scholar
  28. 11.
    a. Dyachkovskii FS, Shilova AK, Shilov AE (1967) J Polym Sei Part C: Polym Symp 16: 2333CrossRefGoogle Scholar
  29. Eisch JJ, Piotrovski AM, Brownstein SK, Gabe EJ, Lee FL (1985) J Am Chem Soc 107: 7219; RFCrossRefGoogle Scholar
  30. c.
    Jordon RF, LaPointe RE, Bajgur CS, Echols SE, Willett R (1987) J Am Chem Soc 109: 4111CrossRefGoogle Scholar
  31. d.
    Hlatky GG, Turner HW, Eckman RR (1989) J Am Chem Soc 111: 2728;CrossRefGoogle Scholar
  32. e.
    Teuben JH, Renkema R, Evans GG (1992) Organometallics 11: 362CrossRefGoogle Scholar
  33. f.
    Mraks TJ (1992) Acc Chem Res 25: 57CrossRefGoogle Scholar
  34. g.
    Bochmann M, Lancaster SJ (1993) Organometallics 12: 633CrossRefGoogle Scholar
  35. 12.
    Massey AG, Park AJ (1964) J Organomet Chem 2: 245CrossRefGoogle Scholar
  36. 13.
    Cavallo L, Guerra G, Catatello M, Corradini P (1991) Macromolecules 24: 1784CrossRefGoogle Scholar
  37. 14.
    Jolly CA, Marynick DS (1989) J Am Chem Soc 111: 7968CrossRefGoogle Scholar
  38. 15.
    Zambelli A (1991) Makromo Chem Macromol Symp 48/49: 297CrossRefGoogle Scholar
  39. 16.
    a. Farina M, Di Silestro G, Sozzani P (1982) Macromolecules, 15: 1451CrossRefGoogle Scholar
  40. b.
    Farina M, Di Silvestro G, Sozzani P, Savaré B (1985) Macromolecules, 18: 923CrossRefGoogle Scholar
  41. c.
    Farina M, Di Silvestro P, Sozzani B (1993) Macromolecules, 26: 946CrossRefGoogle Scholar
  42. 17a.
    Wild FRWP, Zsolnai L, Huttner G, Brintzinger HH (1982) J. Organomet Chem 232: 233Google Scholar
  43. b.
    Wild FRWP, Wasiucionek M, Huttner G, Brintzinger HH (1985) J. Organomet Chem 288: 63CrossRefGoogle Scholar
  44. c.
    Ewen JA (1984) J Am Chem Soc 106: 6355;CrossRefGoogle Scholar
  45. d.
    Kaminsky W, Kuepler K, Brintzinger HH, Wild FRWP (1985) Angew Chem Int Ed Engl 24: 507;CrossRefGoogle Scholar
  46. e.
    Ewen JA, Catalytic Polymerization of Olefins, Keii T, Soga K (1986) Elsevier: New york, 25: 271;Google Scholar
  47. f.
    Ewen JA, Haspeslagh L, Atwood JL, J Am Chem Soc 109 (1987) 6544CrossRefGoogle Scholar
  48. 18.
    a. Roell W, Brintzinger HH, Rieger B, Zolk R (1990) Angew Chem 102: 339CrossRefGoogle Scholar
  49. b.
    Krauledat H, Brintzinger HH (1990) Angew Chem Int Ed Engl 29: 1412CrossRefGoogle Scholar
  50. 19.
    Lauher JW, Hoffmann R (1976) J Am Chem Soc 98: 1729CrossRefGoogle Scholar
  51. 20.
    Soga K, Shiono T, Takeshi S, Takemura S, Kaminsky W (1987) Makromol Chem Rapid Commun 8: 305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Abbas Razavi
    • 1
  • Dominique Vereecke
    • 1
  • Lilian Peters
    • 1
  • Katty Den Dauw
    • 1
  • Léa Nafpliotis
    • 1
  • Jerry L. Atwood
    • 2
  1. 1.Fina Research, Centre de Recherche du Groupe PetrofinaZone Industrielle CFeluyBelgium
  2. 2.Department of ChemistryThe University of AlabamaTuscaloosaUSA

Personalised recommendations