Structure, Regulation and Function of the Osmotin Gene

  • Andrzej K. Kononowicz
  • Kashchandra G. Raghothama
  • Ana M. Casas
  • Donald E. Nelson
  • Dong Liu
  • Meena L. Narasimhan
  • P. Christopher LaRosa
  • Narendra K. Singh
  • Ray A. Bressan
  • Paul M. Hasegawa
Part of the NATO ASI Series book series (volume 86)


Over the past years several genes have been reported to be osmotically regulated (Storey and Storey, 1981; Holtum and Winter, 1982; Singh et al., 1985; Singh et al., 1987a;Bedford et al., 1987; Close et al., 1989; Cushman et al., 1989; Singh et al., 1989a; 1989b; Delauney and Verma, 1990; Perez-Prat et al., 1990; Skriver and Mundy, 1990; Bartels et al., 1991; Dhindsa, 1991, Estragarcia et al., 1991; Narasimhan et al., 1991; Perez-Prat et al., 1992; Kononowicz et al., 1992; Nelson et al., 1992; Niu et al., 1993; Zhu et al., 1993b). These studies have been rationalized on the assumption that amongst these genes are molecular determinants of osmotic tolerance. Although the products of many of these genes still remain unidentified there are a number that have been well characterized and are of interest of several laboratories. One of these genes is osmotin (Singh et al., 1987a; LaRosa et al., 1989, Meeks-Wagner et al., 1989; Grosset et al., 1990; Roberts and Selitrennikoff, 1990; Stintzi et al., 1991; Woloshuk et al., 1991; Casas et al., 1992; LaRosa et al., 1992, Kononowicz et al., 1993).


Transgenic Tobacco Plant Root Elongation Zone Osmotin Gene Seed Coat Tissue Atriplex Nummularia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl-Goy P, Luntz T, Ward E, Ryals J (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein la. Proc Natl Acad Sci USA 90: 7327–7331PubMedCrossRefGoogle Scholar
  2. Bartels D, Engelhardt K, Roncarati R, Schneider K, Rotter M, Salamini F (1991) An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. EMBO J 10: 1037–1043PubMedGoogle Scholar
  3. Bedford J, Bagnasco S, Kador P, Harris W, Burg W (1987) Characterization and purification of a mammalian osmoregulatory protein, aldose reductase, induced in renal medullary cells by high extracellular NaCl. J Biol Chem 222: 14255–14259Google Scholar
  4. Brederode FT, Linthorst HJM, Bol JF (1991) Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol 17: 1117–1125PubMedCrossRefGoogle Scholar
  5. Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197PubMedCrossRefGoogle Scholar
  6. Casas AM, Nelson DE, Raghothama KG, Paino D’Urzo M, Singh NK, Bressan RA, Hasegawa PM (1992) Expression of osmotin-like genes in the halophyte Atriplex nummularia L. Plant Physiol 99: 329–33PubMedCrossRefGoogle Scholar
  7. Close TJ, Kortt AA, Chandler PM (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13: 95–108PubMedCrossRefGoogle Scholar
  8. Cordes S, Deikman J, Margossian LJ, Fisher RL (1989) Interaction of a developmentally regulated DNA-binding factor with sites flanking two different fruit-ripening genes from tomato. Plant Cell 1: 1025–1034PubMedCrossRefGoogle Scholar
  9. Cornelissen BJC, Hooft van Hievjsduijnen RAM, Bol JF (1986) A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin. Nature 321: 531–532PubMedCrossRefGoogle Scholar
  10. Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ (1989) Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell 1: 715–725PubMedCrossRefGoogle Scholar
  11. Cutt JR, Harpster MH, Dixon DC, Carr JP, Dunsmuir P, Klessig DF (1989) Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis related PR-lb gene. Virology 173: 89–97PubMedCrossRefGoogle Scholar
  12. Cutt JR, Klessig DF (1992) Pathogenesis-related proteins. In T Boiler, F Meins, eds, Genes Involved in Plant Defense. Springer-Verlag, New York, pp 209–243CrossRefGoogle Scholar
  13. Delauney A, Verma D (1990) A soybean l-pyrroline-5-carboxylate reductase gene was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Mol Gen Genet 221: 299–305PubMedCrossRefGoogle Scholar
  14. de Vos AM, Hatada M, Van del Wei H, Krabbendam H, Peerdeman AF, Kim S-H (1985) Three-dimensional structure of thaumatin I, an intensely sweet protein. Proc Natl Acad Sci USA 82: 1406–1409PubMedCrossRefGoogle Scholar
  15. Dhindsa RS (1991) Drought stress, enzymes of glutathione metabolism, oxidation injury, and protein synthesis in Tortula ruralis. Plant Physiol 95: 648–651PubMedCrossRefGoogle Scholar
  16. Drews GN, Goldberg RB (1989) Genetic control of flower development. TIG 5: 256–261.PubMedCrossRefGoogle Scholar
  17. Edelbaum O, Ilan N, Grafi G, Sher N, Stram Y, Novick D, Tal N, Sela I, Rubinstein M (1990) Two antiviral proteins from tobacco: Purification and characterization by monoclonal antibodies to human B-interferon. Proc Natl Acad Sci USA 87: 588–592PubMedCrossRefGoogle Scholar
  18. Edens L, Heslinga L, Klok R, Ledeboer AM, Maat J, Toonen MY, Visser C, Verrips CT (1982) Cloning of cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Escherichia coli. Gene 18: 1–12PubMedCrossRefGoogle Scholar
  19. Estragarcia T, Craxton A, Kirk C, Michell R (1991) A salt-activated inositol 1,3,4,5-tetrakisphosphate 3-phosphatase at the inner surface of the human erythrocyte membrane. Proc Royal Soc London Series B 244: 63–68CrossRefGoogle Scholar
  20. Frendo P, Didierjean L, Passelegue E, Burkard G (1992) Abiotic stresses induce a thaumatin-like protein in maize; cDNA isolation and sequence analysis. Plant Sci 85: 61–69CrossRefGoogle Scholar
  21. Goldberg RB (1988) Plants: Novel developmental processes. Science 240: 1460–1467PubMedCrossRefGoogle Scholar
  22. Goldsbrough AP, Albrecht H, Stratford R (1993) Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J 3: 563–571PubMedCrossRefGoogle Scholar
  23. Gomez J, Sanchez-Martinez D, Stiefel V, Rigau J, Puigdomenech P, Pages M (1988) A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334: 262–264PubMedCrossRefGoogle Scholar
  24. Graham JS, Burkhart W, Xiong J, Gillikin JW (1992) Complete amino acid sequence of soybean leaf P21. Plant Physiol 98: 163–165PubMedCrossRefGoogle Scholar
  25. Grosset J, Meyer Y, Chartier Y, Kauffmann S, Legrand M, Fritig B (1990) Tobacco mesophyll protoplasts synthesize 1,3-6-glucanase, chitinase and “osmotins” during in vitro culture. Plant Physiol 92: 520–52PubMedCrossRefGoogle Scholar
  26. Grumet R, Hanson A, (1986) Genetic evidence for an osmoregulatory function of glycinbetaine accumulation in barley. Aust J Plant Physiol 13: 353–364CrossRefGoogle Scholar
  27. Hahn M, Lehnackers H, Knogge W (1991) Sequence. H. vulgare mRNA for a pathogenesis-related protein (Hv-lb). EMBL Data Library, unpublished.Google Scholar
  28. Hanson DD, Hamilton DA, Travis JL, Bashe DM, Mascarenhas JP (1989) Characterization of a pollen-specific cDNA clone from Zea mays and its expression. Plant Cell 1: 173–179PubMedCrossRefGoogle Scholar
  29. Hasegawa PM, Bressan RA, Handa AK (1986) Cellular mechanisms of salinity tolerance. HortScience 21: 1317–1324Google Scholar
  30. Hejgaard J, Jacobsen S, Svendsen I (1991) Two antifungal thaumatin-like proteins from barley grain. FEBS Lett 291: 127–131PubMedCrossRefGoogle Scholar
  31. Holtum J, Winter K (1982) Activity of enzymes of carbon metabolism during the induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum L. Planta 155: 8–16CrossRefGoogle Scholar
  32. Kauffmann S, Legrand M, Fritig B (1990) Isolation and characterization of six pathogenesis-related ( PR) proteins of Samsun NN tobacco. Plant Mol Biol 14: 381–390PubMedCrossRefGoogle Scholar
  33. King GJ, Turner VA, Hussey CE, Wurtele ES, Lee SM (1988) Isolation and characterization of a tomato cDNA cline which codes for a salt-induced protein. Plant Mol Biol 10: 401–412CrossRefGoogle Scholar
  34. Koltunow AM, Triettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201–1224PubMedCrossRefGoogle Scholar
  35. Kononowicz AK, Nelson DE, Singh NK, Hasegawa PM, Bressan RA (1992) Regulation of the osmotin gene promoter. Plant Cell 4: 513–52PubMedCrossRefGoogle Scholar
  36. Kononowicz AK, Raghothama KG, Casas AM, Reuveni M, Watad A-EA, Liu D, Bressan RA, Hasegawa PM (1993) Osmotin: Regulation of gene expression and function. In TJ Close, EA Bray, eds, Plant Responses to Cellular Dehydration during Environmental Stress, The American Society of Plant Physiologists, Rockville, MD, pp 144–158Google Scholar
  37. Kumar V, Spencer ME (1992) Nucleotide sequence of an osmotin cDNA from the Nicotiana tabacum cv. White Burley generated by the polymerase chain reaction. Plant Mol Biol 18: 621–622PubMedCrossRefGoogle Scholar
  38. Lam E, Benfey PN, Gilmartin PM, Rong-Xiang F, Chua N-H (1989) Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci USA 86: 7890–7894PubMedCrossRefGoogle Scholar
  39. Lamb CJ, Ryals JA, Ward ER, Dixon RA (1992) Emerging strategies for enhancing crop resistance to microbial pathogens. Bio/Technology 10: 1436–1445PubMedCrossRefGoogle Scholar
  40. LaRosa CP, Hasegawa PM, Rhodes D, Clithero JM, Watad A-EA, Bressan RA (1987) Abscisic acid stimulated osmotic adjustment and its involvement in adaptation of tobacco cells to NaCl. Plant Physiol 85: 174–185CrossRefGoogle Scholar
  41. LaRosa PC, Singh NK, Hasegawa PM, Bressan RA (1989) Stable NaCl tolerance of tobacco cells is associated with enhanced accumulation of osmotin. Plant Physiol 91: 855–861CrossRefGoogle Scholar
  42. LaRosa PC, Chen Z, Nelson DE, Singh NK, Hasegawa PM, Bressan RA (1992) Osmotin gene expression is posttranscriptionally regulated. Plant Physiol 100: 409–415CrossRefGoogle Scholar
  43. Linthorst HJM, Meuwissen RLJ, Kauffmann S, Bol JF (1989) Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. Plant Cell 1: 285–291PubMedCrossRefGoogle Scholar
  44. Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1993) Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci USA, in pressGoogle Scholar
  45. Loake GJ, Faktor O, Lamb CJ, Dixon RA (1992) Combination of H-box [CCTACC(N)7CT] and G-box ( CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. Proc Natl Acad Sci USA 89: 9230–9234PubMedCrossRefGoogle Scholar
  46. Marcotte WR Jr, Russel SH, Quatrano RS (1989) Abscisuc acid-responsive sequence from the EM gene of wheat. Plant Cell 1: 969–976PubMedCrossRefGoogle Scholar
  47. Mascarenhas JP (1988) Anther- and pollen-expressed genes. In DPS Verma, RB Goldberg, eds, Temporal and Spatial Regulation of Plant Genes. Springer-Verlag, New York, pp 97–115CrossRefGoogle Scholar
  48. McCormick S, Smith A, Gasser C, Sachs K, Hinchee M, Horsch R, Fraley R (1987) The identification of genes specifically expressed in reproductive organs of tomato. In D Nevins, R Jones, eds, Tomato Biotechnology. Alan Liss, New York, pp 255–265Google Scholar
  49. Meeks-Wagner DR, Dennis ES, Tran Thanh Van K, Peacock WJ (1989) Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development. Plant Cell 1: 25–35.PubMedCrossRefGoogle Scholar
  50. Narasimhan ML, Binzel ML, Perez-Prat E, Chen Z, Nelson DE, Singh NK, Bressan RA, Hasegawa PM (1991) NaCl regulation of tonoplast ATPase 70-kilodalton subunit mRNA in tobacco cells. Plant Physiol 97: 562–568PubMedCrossRefGoogle Scholar
  51. Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks-Wagner DR, Peacock WJ, Dennis ES (1990) Chitinase, 6-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2: 673–684PubMedCrossRefGoogle Scholar
  52. Nelson DE, Raghothama KG, Singh NK, Hasegawa PM, Bressan RAGoogle Scholar
  53. (1992).
    Analysis of structure and transcriptional activation of an osmotin gene. Plant Mol Biol 19: 577–588Google Scholar
  54. Neuhaus J-M, Ahl-Goy P, Hinz U, Flores S, Meins F Jr (1991) High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol Biol 16: 141–151PubMedCrossRefGoogle Scholar
  55. Neuhaus J-M, Flores S, Keefe D, Ahl-Goy P, Meins F Jr (1991) The function of vacuolar B-l,3-glucanase investigated by antisense transformation. Susceptibility of transgenic Nicotiana sylvestris plants to Cercospora nicotianae infection. Plant Mol Biol 19: 803–813CrossRefGoogle Scholar
  56. Niu X, Zhu J-K, Narasimhan ML, Bressan RA, Hasegawa PM (1993) Plasma-membrane H+-ATPase gene expression is regulated by NaCl in cells of the halophyte Atriplex nummularia L. Planta 190: 433–438PubMedCrossRefGoogle Scholar
  57. Payne G, Middlesteadt W, Williams S, Desai N, Parks TD, Dincher S, Carnes M, Ryals J (1988) Isolation and nucleotide sequence of a novel cDNA clone encoding the major form of pathogenesis-related protein R. Plant Mol Biol 11: 223–224CrossRefGoogle Scholar
  58. Perez-Prat E, Narasimhan ML, Binzel ML, Botella MA, Chen Z, Valpuesta V, Bressan RA, Hasegawa PM (1992) Induction of a putative Ca2+-ATPase mRNA in NaCl-adapted cells. Plant Physiol 100: 1471–1478PubMedCrossRefGoogle Scholar
  59. Pierpoint WS, Tatham AS, Pappin DJC (1987) Identification of the virus-induced protein of tobacco leaves that resembles the sweet-protein thaumatin. Physiol Mol Plant Pathol 31: 291–298CrossRefGoogle Scholar
  60. Pierpoint WS, Jackson PJ, Evans RM (1990) The presence of a thaumatin-like protein, a chitinase and glucanase among the pathogenesis-related proteins of potato ( Solanum tuberosum ). Physiol Mol Plant Pathol 36: 325–338CrossRefGoogle Scholar
  61. Pla M, Vilardell J, Guiltinan MJ, Marcotte WR, Niogret MF, Quatrano RS, Pages M (1993) The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28. Plant Mol Biol 21: 259–266PubMedCrossRefGoogle Scholar
  62. Raghothama KG, Liu D, Nelson DE, Hasegawa PM, Bressan RA (1993) Analysis of an osmotically-regulated pathogenesis-related osmotin gene promoter. Plant Mol Biol, in pressGoogle Scholar
  63. Rebmann G, Mauch F, Dudler R (1991) Sequence of a wheat cDNA encoding a pathogen-induced thaumatin-like protein. Plant Mol Biol 17: 283–285PubMedCrossRefGoogle Scholar
  64. Reimmann C, Dudler R (1993) cDNA cloning and sequence analysis of a pathogen-induced thaumatin-like protein from rice ( Oryza sativa ). Plant Physiol 101: 1113–1114PubMedCrossRefGoogle Scholar
  65. Reuveni M, Liu D, Singh NK, Chen Z, Narasimhan ML, Hasegawa PM, Bressan RA (1993) Osmotin acts to permebilize cells of fungal pathogens. (Abstract No. 633) Plant Physiol 102: S–112Google Scholar
  66. Richardson M, Valdes-Rodriguez S, Blanco-Labia A (1987) A possible function for thaumatin and a TMV- induced protein suggested by homology to a maize inhibitor. Nature 327: 432–434CrossRefGoogle Scholar
  67. Roberts WK, Selitrennikoff CP (1990) Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J Gen Microbiol 136: 1771–1778Google Scholar
  68. Rodrigo I, Vera P, Frank R, Conejero V (1991) Identification of the viroid-induced tomato pathogenesis-related (PR) protein P23 as a thaumatin-like tomato protein NP24 associated with osmotic stress. Plant Mol Biol 16: 931–934PubMedCrossRefGoogle Scholar
  69. Rodrigo I, Vera P, Tornero P, Hernandez-Yago J, Conejero V (1993) cDNA cloning of viroid-induced tomato pathogenesis-related protein P23. Characterization as a vacuolar antifungal factor. Plant Physiol 102: 939–945PubMedCrossRefGoogle Scholar
  70. Ruiz-Medrano R, Jimenez-Moraila B, Herrera-Estrella L, Rivera-Bustamante RF (1992) Nucleotide sequence of an osmotin-like cDNA induced in tomato during viroid infection. Plant Mol Biol 20: 1199–1202PubMedCrossRefGoogle Scholar
  71. Singh NK, Handa AK, Hasegawa PM, Bressan RA (1985) Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiol 79: 126–137PubMedCrossRefGoogle Scholar
  72. Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA (1987a) Characterization of osmotin. Plant Physiol 85: 529–536PubMedCrossRefGoogle Scholar
  73. Singh NK, LaRosa PC, Handa AK, Hasegawa PM, Bressan RA (1987b) Hormonal regulation of protein synthesis associated with salt tolerance in plant cells. Proc Natl Acad Sci USA 84: 739–743PubMedCrossRefGoogle Scholar
  74. Singh NK, Nelson DE, Kuhn D, Hasegawa PM, Bressan RA (1989a) Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol 90: 1096–1101PubMedCrossRefGoogle Scholar
  75. Singh NK, Nelson DE, LaRosa PC, Bracker CE, Handa AK, Hasegawa PM, Bressan RA (1989b) Osmotin: a protein associated with osmotic stress adaptation in plant cells. In JH Cherry, ed, Environmental Stress in Plants, NATO ASI Series, vol G19. Springer-Verlag, Berlin-Heidelberg, pp 67–87Google Scholar
  76. Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress Plant Cell 2: 503-512 Smith, A., Hinchee, M.A., and Horsch, R. (1987). Cell and tissue specific expression localized by in situ RNA hybridization in floral tissues. Plant Mol. Biol. Rep. 5, 237–241.Google Scholar
  77. Smith A, Hinchee MA, Horsch R (1987) Cell and tissue specific expression localized by in situ RNA hybridization in floral tissues. Plant Mol Biol Rep 5: 237–241CrossRefGoogle Scholar
  78. Stintzi A, Heitz T, Kauffmann S, Legrand M, Fritig B (1991) Identification of a basic pathogenesis-related thaumatin-like protein of virus-infected tobacco as osmotin. Physiol Mol Plant Pathol 38: 137–146CrossRefGoogle Scholar
  79. Storey K, Storey J (1981) Biochemical strategies of overwintering in the gall fly larva, Eurosta solidaginis: control of cryoprotectant polyol synthesis. Insect Biochem 12: 501–505Google Scholar
  80. Takeda S, Sato F, Ida K, Yamada Y (1991) Nucleotide sequence of a cDNA for osmotin-like protein from cultured tobacco cells. Plant Physiol 97: 844–846PubMedCrossRefGoogle Scholar
  81. Twell D, Yamaguchi J, McCormick S (1990) Pollen-specific gene expression in transgenic plants: Coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 109: 705–713PubMedGoogle Scholar
  82. Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Gen Dev 5: 496–507CrossRefGoogle Scholar
  83. Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 911 4: 645–656CrossRefGoogle Scholar
  84. van Kan AL, van de Rhee MD, Zuidema D, Cornelissen BJC, Bol JF (1989) Structure of tobacco genes encoding thaumatin-like proteins. Plant Mol Biol 12: 153–155Google Scholar
  85. van Loon LC, Gerritsen YAM, Ritter CE (1987) Identification, purification, and characterization of pathogenesis-related proteins from virus-infected Samsun NN tobacco leaves. Plant Mol Biol 9: 593–609CrossRefGoogle Scholar
  86. Vigers AJ, Wiedemann S, Roberts WK, Legrand M, Selitrennikoff CP, Fritig B (1992) Thaumatin-like pathogenesis-related proteins are antifungal. Plant Sci 83: 155–161CrossRefGoogle Scholar
  87. Vigers AJ, Roberts WK, Selitrennikoff CP (1991) A new family of plant antifungal proteins. Mol Plant-Microb Interact 4: 315–323CrossRefGoogle Scholar
  88. Weretilnyk E, Hanson A (1990) Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc Natl Acad Sci USA 87: 2745–2759PubMedCrossRefGoogle Scholar
  89. Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, van den Elzen PJM, Cornelissen BJC (1991) Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3: 619–628PubMedCrossRefGoogle Scholar
  90. Zhu B. Chen THH, Li PH (1993a) Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii. Plant Mol Biol 21: 729–735PubMedCrossRefGoogle Scholar
  91. Zhu J-K, Shi J, Bressan RA, Hasegawa PM (1993b) Expression of an Atriplex nummularia gene encoding protein homologous to the bacterial molecular chaperone DnaJ. Plant Cell 5: 341–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Andrzej K. Kononowicz
    • 1
  • Kashchandra G. Raghothama
    • 1
  • Ana M. Casas
    • 1
  • Donald E. Nelson
    • 1
  • Dong Liu
    • 1
  • Meena L. Narasimhan
    • 1
  • P. Christopher LaRosa
    • 1
  • Narendra K. Singh
    • 1
  • Ray A. Bressan
    • 1
  • Paul M. Hasegawa
    • 1
  1. 1.Center for Plant Environmental Stress Physiology Department of HorticulturePurdue UniversityWest LafayetteUSA

Personalised recommendations