Skip to main content

Chaotic Dynamics in Neural Pattern Recognition

  • Conference paper
From Statistics to Neural Networks

Part of the book series: NATO ASI Series ((NATO ASI F,volume 136))

Abstract

The use of impulse inputs for characterizing neural “signals” that are embedded in electroencephalographic EEG “noise” is reviewed in the context of linear systems analysis. Examples are given of the use of linear and nearly linear basis functions with statistics for measurement of neural activity patterns of single cells and populations, with emphasis on the relations between microscopic and macroscopic activity, including measurement of local mean fields and description of the transfer of microscopic sensory information to the macroscopic level of perception and then back to microscopic cortical output by action potentials. Some elements of nonlinear dynamics are introduced that are needed to understand the emergence of low-dimensional aperiodic activity in sensory cortex, and its possible uses for the operation of Hebbian synapses during the learning of new generalization gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian ED (1950) The electrical activity of the mammalian olfactory bulb. Electroencephalogr. clin. Neurophys. 2: 377–388.

    Google Scholar 

  • Babloyantz A, Destexhe A (1986) Low-dimensional chaos in an instance of epilepsy. Proceedings of the National Academy of Sciences USA 83: 3513–3517.

    Article  Google Scholar 

  • Basar E (1980) EEG — Brain Dynamics. Amsterdam, Elsevier

    Google Scholar 

  • Basar E (1990) Chaos in Brain Function. Berlin, Springer-Verlag.

    Book  Google Scholar 

  • Bressler SL, Freeman WJ (1980) Frequency analysis of olfactory system EEG in cat, rabbit and rat. Electroencephalography and clinical Neurophysiology 50: 19–24.

    Article  Google Scholar 

  • Eeckman FH, Freeman WJ (1990) Correlations between unit firing and EEG in the rat olfactory system. Brain Res. 528: 238–244.

    Article  Google Scholar 

  • Eeckman FH Freeman WJ (1991) Asymmetric sigmoid nonlinearity in the rat olfactory system. Brain Research 557: 13–21.

    Article  Google Scholar 

  • Freeman WJ (1975) Mass Action in the Nervous System. New York, Academic Press

    Google Scholar 

  • Freeman WJ (1979a) Nonlinear gain mediating cortical stimulus-response relations. Biological Cybernetics 33:237–247.

    Article  Google Scholar 

  • Freeman WJ (1979b) Nonlinear dynamics of paleocortex manifested in the olfactory EEG. Biological Cybernetics 35: 21–37.

    Article  Google Scholar 

  • Freeman WJ (1979c) EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb. Biological Cybernetics 35.:221–234.

    Article  Google Scholar 

  • Freeman WJ (1987a) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biolological Cyberbernetics 56:139–150.

    Article  Google Scholar 

  • Freeman WJ (1987b) Techniques used in the search for the physiological basis of the EEG., In:,Gevins A, Remond A (eds). Handbook,Electroencephalography and clinical Neurophysiology Vol 3A, Part 2, Ch. 18. Amsterdam, Elsevier. pp. 583–664.

    Google Scholar 

  • Freeman WJ (1991) The physiology of perception. Scientific American 264: 78–85.

    Article  Google Scholar 

  • Freeman, WJ (1992) Tutorial in Neurobiology: From Single Neurons to Brain Chaos. International Journal of Bifurcation and Chaos 2: 451–482.

    Article  MATH  Google Scholar 

  • Freeman WJ, Baird B (1987) Relation of olfactory EEG to behavior: Spatial analysis: Behavioral. Neurosci. 101:393–408.

    Google Scholar 

  • Freeman WJ, Grajski, K.A. (1987) Relation of olfactory EEG to behavior: Factor analysis: Behavioral. Neurosci. 101: 766–777.

    Google Scholar 

  • Freeman WJ., Van Dijk B (1987) Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Research: 422: 267–276.

    Article  Google Scholar 

  • Freeman WJ, Viana Di Prisco, G. (1986) Relation of olfactory EEG to behavior: Time series analysis. Behavioral Neuroscience 100:753–763.

    Article  Google Scholar 

  • Freeman WJ, Yao Y, Burke B. (1988) Central pattern generating and recognizing in olfactory bulb: A correlation learning rule. Neural Networks 1: 277–288.

    Article  Google Scholar 

  • Grajski KA, Breiman L, Viana Di Prisco G, Freeman WJ (1986) Classification of EEG spatial patterns with tree-structured methodology. IEEE Trans. Biomed. Engineering 33: 1076–1086.

    Article  Google Scholar 

  • Grajski KA, Freeman WJ (1989) Spatial EEG correlates of non-associative and associative learning in rabbits. Behavioral Neuroscience 103 790–804.

    Article  Google Scholar 

  • Gray CM, Freeman WJ, Skinner JE (1986) Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial-pattern change depends on norepinephrine. Behavioral Neuroscience 100: 585–596.

    Article  Google Scholar 

  • Gray CM, Koenig P, Engel A, Singer W (1989) Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature 338: 334–337.

    Article  Google Scholar 

  • Gray CM, Skinner JE (1988) Centrifugal regulation of neuronal activity in the olfactory bulb of the waking rabbit as revealed by reversible cryogenic blockade. Exper. Brain Res. 69: 378–386.

    Google Scholar 

  • Haken H, Stadler M (1990) Synergetics of Cognition. Berlin, Springer-Verlag.

    Google Scholar 

  • Lancet D, Greer CA, Kauer JS, Shepherd, GM (1982) Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography. Proceedings, National Academy of Sciences 79: 670–674.

    Article  Google Scholar 

  • Moulton DG (1976) Spatial patterning of responses to odors in the peripheral olfactory system. Physiological Reviews 56:578–593.

    Google Scholar 

  • Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 18: 401–409.

    Article  Google Scholar 

  • Skarda CA, Freeman WJ (1987) How brains make chaos to make sense of the world. Brain and Behavioral Science 10: 161–195.

    Article  Google Scholar 

  • Thompson JMT, Stewart HB (1986) Nonlinear Dynamics and Chaos. New York, Wiley.

    MATH  Google Scholar 

  • Viana Di Prisco G (1984) Hebb synaptic plasticity. Progress in. Neurobiology 22: 89–102.

    Google Scholar 

  • Yao Y, Freeman WJ (1990) Model of biological pattern recognition with spatially chaotic dynamics. Neural Networks 3: 153–170.

    Article  Google Scholar 

  • Yao Y, Freeman WJ, Burke B, Yang Q (1991) Pattern recognition by a distributed neural network: An industrial application. Neural Networks 4: 103–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freeman, W.J. (1994). Chaotic Dynamics in Neural Pattern Recognition. In: Cherkassky, V., Friedman, J.H., Wechsler, H. (eds) From Statistics to Neural Networks. NATO ASI Series, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79119-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79119-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79121-5

  • Online ISBN: 978-3-642-79119-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics