Quantum Soliton Collisions: Logic and QND

  • P. D. Drummond
  • J. Breslin
  • W. Man
  • R. M. Shelby
Part of the Springer Proceedings in Physics book series (SPPHY, volume 77)


The Wigner function technique for the quantum theory of nonlinear Schroedinger equation soli-ton collisions is developed. This is applied to experiments on reversible pulse-position switching or logic gates, and to quantum non-demolition (QND) measurements of photon number. A strong limit to cascaded logic gate performance is found, due to rapidly increasing error rates as the number of sequential logic operations is increased. We also obtain bounds on the achievable QND signal-to-noise ratio for quantum soliton collisional measurements of photon number. In this case, a modified strategy of combined phase/amplitude quadrature measurement can give essentially unlimited QND performance, provided thermal noise effects are small.


Coherent State Phase Noise Logic Gate Photon Number Reversible Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. H. Bennet, IBM J. Res. Dev. 17, 525 (1973).CrossRefGoogle Scholar
  2. [2]
    M. N. Islam and C. E. Soccolich, Optics Letters 16, 1490 (1991).CrossRefADSGoogle Scholar
  3. [3]
    S.R. Friberg, S. Machida, Y. Yamamoto, Phys. Rev. Lett. 69, 3165 (1992).CrossRefADSGoogle Scholar
  4. [4]
    V. B. Braginsky, Y. I. Vorontsov, K. S. Thome, Science 209, 547 (1980).CrossRefADSGoogle Scholar
  5. [5]
    H. A. Haus, K. Watanabe, Y. Yamamoto, J. Opt. Soc. Am. B 6, 1138 (1989).CrossRefADSGoogle Scholar
  6. [6]
    S. J. Carter, P. D. Drummond, M. D. Reid & R. M. Shelby, Phys. Rev. Lett. 58, 1841 (1987).CrossRefADSGoogle Scholar
  7. [7]
    P. D. Drummond, S. J. Carter, J. Opt. Soc. Am. B 4, 1565 (1987).CrossRefADSGoogle Scholar
  8. [8]
    P. D. Drummond, R. M. Shelby, S. R. Friberg, Y Yamamoto, Nature 365, 307 (1993).CrossRefADSGoogle Scholar
  9. [9]
    P. D. Drummond & A. D. Hardman, Europhys. Lett. 21, 270 (1993).CrossRefADSGoogle Scholar
  10. [10]
    D. J. Kaup, Phys. Rev. A 42, 5689 (1990).CrossRefADSGoogle Scholar
  11. [11]
    P.D. Drummond, W. Man, (to appear in Opt. Commun).Google Scholar
  12. [12]
    A. Hasegawa, F. Tappert, Appl. Phys. Lett. 45, 142 (1973).CrossRefADSGoogle Scholar
  13. [13]
    L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).CrossRefADSGoogle Scholar
  14. [14]
    V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).ADSMathSciNetGoogle Scholar
  15. [15]
    M.D. Levenson, R.M. Shelby, J. Mod. Optics 34, 775 (1987).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • P. D. Drummond
    • 1
    • 2
  • J. Breslin
    • 1
    • 2
  • W. Man
    • 1
    • 2
  • R. M. Shelby
    • 1
    • 2
  1. 1.Physics DepartmentUniversity of QueenslandSt. LuciaAustralia
  2. 2.IBM Almaden Research LaboratorySan JoseUSA

Personalised recommendations